期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
半湿润流域洪水预报实时校正方法比较 被引量:15
1
作者 徐杰 李致家 +1 位作者 霍文博 马亚楠 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第4期317-322,共6页
为了提高新安江模型在半湿润流域的洪水预报精度,选择K最近邻(KNN)算法、传统的误差自回归(AR)方法、反馈模拟方法3种实时校正方法,以陕西省陈河流域为试验对象进行洪水预报。以洪峰相对误差和纳什效率系数为评价指标,分析对比3种方法... 为了提高新安江模型在半湿润流域的洪水预报精度,选择K最近邻(KNN)算法、传统的误差自回归(AR)方法、反馈模拟方法3种实时校正方法,以陕西省陈河流域为试验对象进行洪水预报。以洪峰相对误差和纳什效率系数为评价指标,分析对比3种方法的校正效果。结果表明:3种校正方法均能提高预报纳什效率系数,其中反馈模拟最优,AR、KNN效果次之;反馈模拟对洪峰误差校正相比于KNN算法在短预见期内更为精确,两者均能减小AR法在洪峰误差校正上的不足;加入历史样本的KNN算法在洪峰误差校正上效果优于反馈模拟,可有效提高洪水预报精度。 展开更多
关键词 洪水预报 预报精度 实时校正 K最近邻算法 反馈模拟方法 误差自回归方法 新安江模型 半湿润流域 陈河流域
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部