为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能...为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能传输技术。为此,本文提出了一种基于数据聚类的CSI反馈Transformer网络的简化方法,采用基于聚类的近似矩阵乘法(Approximate matrix multiplication,AMM)技术,以降低反馈过程中Transformer网络的计算复杂度。本文主要对Transformer网络的全连接层计算(等效为矩阵乘法),应用乘积量化(Product quantization,PQ)和MADDNESS等简化方法,分析了它们对计算复杂度和系统性能的影响,并针对神经网络数据的特点进行了算法优化。仿真结果表明,在适当的参数调整下,基于MADDNESS方法的CSI反馈网络性能接近精确矩阵乘法方法,同时可大幅降低计算复杂度。展开更多
针对在大规模多输入多输出(multiple-input multiple-output,MIMO)系统中,信道状态信息(channel state information,CSI)反馈量过大以及反馈的CSI过时的问题,提出一种基于自回归(autoregressive,AR)模型和主成分分析(principal componen...针对在大规模多输入多输出(multiple-input multiple-output,MIMO)系统中,信道状态信息(channel state information,CSI)反馈量过大以及反馈的CSI过时的问题,提出一种基于自回归(autoregressive,AR)模型和主成分分析(principal component analysis,PCA)方法的反馈算法。接收端进行信道估计获得CSI后,先利用AR模型预测出反馈所需时间之后的CSI;在此基础上计算压缩矩阵,然后利用PCA方法对预测的CSI进行压缩,再反馈给基站;最后基站端对接收到的CSI进行重构。从理论分析和仿真结果可以看出,该算法可以在降低反馈量的同时提高系统容量和信道恢复的准确性。展开更多
信道状态信息(channel state information,CSI)的精确获取是大规模天线发挥效能的关键。在现有的通信系统中,上下行链路互易性不理想时,基于码本进行下行链路的CSI反馈。随着天线规模的增大,码本CSI反馈所需要的开销也越来越大。给出了...信道状态信息(channel state information,CSI)的精确获取是大规模天线发挥效能的关键。在现有的通信系统中,上下行链路互易性不理想时,基于码本进行下行链路的CSI反馈。随着天线规模的增大,码本CSI反馈所需要的开销也越来越大。给出了基于人工智能(artificial intelligence,AI)的CSI反馈压缩方法,分析了基于AI的CSI反馈的标准化影响、通信流程与面临的挑战,提供了评估结果。评估结果表明,相对于基于频域基向量压缩的码本CSI反馈,基于AI的CSI反馈在相同的反馈精度下可以显著地降低反馈开销。展开更多
文摘信道状态信息(channel state information,CSI)的精确获取是大规模天线发挥效能的关键。在现有的通信系统中,上下行链路互易性不理想时,基于码本进行下行链路的CSI反馈。随着天线规模的增大,码本CSI反馈所需要的开销也越来越大。给出了基于人工智能(artificial intelligence,AI)的CSI反馈压缩方法,分析了基于AI的CSI反馈的标准化影响、通信流程与面临的挑战,提供了评估结果。评估结果表明,相对于基于频域基向量压缩的码本CSI反馈,基于AI的CSI反馈在相同的反馈精度下可以显著地降低反馈开销。