期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的门机抓斗检测方法
被引量:
2
1
作者
张文明
刘向阳
+1 位作者
李海滨
李雅倩
《光电工程》
CAS
CSCD
北大核心
2021年第1期14-23,共10页
在港口门机抓斗装卸干散货的作业过程中,人眼观察无法精确判断抓斗所在位置,会带来工作效率低下及安全性等问题。为解决该问题首次提出了一种基于深度学习的门机抓斗检测方法。利用改进的深度卷积神经网络YOLOv3-tiny对抓斗数据集进行...
在港口门机抓斗装卸干散货的作业过程中,人眼观察无法精确判断抓斗所在位置,会带来工作效率低下及安全性等问题。为解决该问题首次提出了一种基于深度学习的门机抓斗检测方法。利用改进的深度卷积神经网络YOLOv3-tiny对抓斗数据集进行训练及测试,进而学习其内部特征表示。实验结果表明,基于深度学习的门机抓斗检测方法可实现门机抓斗检测速度每秒45帧,召回率高达95.78%,在很好满足检测实时性与准确性的同时,提高了工业现场作业的安全性及效率。
展开更多
关键词
抓斗检测
深度学习
YOLOv3-tiny
空间金字塔池化
反转残差组
空洞卷积
在线阅读
下载PDF
职称材料
题名
基于深度学习的门机抓斗检测方法
被引量:
2
1
作者
张文明
刘向阳
李海滨
李雅倩
机构
燕山大学电气工程学院
燕山大学工业计算机控制工程河北省重点实验室
出处
《光电工程》
CAS
CSCD
北大核心
2021年第1期14-23,共10页
基金
河北省自然科学基金资助项目(F2019203195)。
文摘
在港口门机抓斗装卸干散货的作业过程中,人眼观察无法精确判断抓斗所在位置,会带来工作效率低下及安全性等问题。为解决该问题首次提出了一种基于深度学习的门机抓斗检测方法。利用改进的深度卷积神经网络YOLOv3-tiny对抓斗数据集进行训练及测试,进而学习其内部特征表示。实验结果表明,基于深度学习的门机抓斗检测方法可实现门机抓斗检测速度每秒45帧,召回率高达95.78%,在很好满足检测实时性与准确性的同时,提高了工业现场作业的安全性及效率。
关键词
抓斗检测
深度学习
YOLOv3-tiny
空间金字塔池化
反转残差组
空洞卷积
Keywords
grab detection
deep learning
YOLOv3-tiny
SPP
inverted residual group
dilated convolution
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
U653 [交通运输工程—港口、海岸及近海工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的门机抓斗检测方法
张文明
刘向阳
李海滨
李雅倩
《光电工程》
CAS
CSCD
北大核心
2021
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部