The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled elec...The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts.展开更多
Objective:Neuropathic pain(NP)is one of the most common forms of chronic pain,yet current treatment options are limited in effectiveness.Peripheral nerve injury activates spinal microglia,altering their inflammatory r...Objective:Neuropathic pain(NP)is one of the most common forms of chronic pain,yet current treatment options are limited in effectiveness.Peripheral nerve injury activates spinal microglia,altering their inflammatory response and phagocytic functions,which contributes to the progression of NP.Most current research on NP focuses on microglial inflammation,with relatively little attention to their phagocytic function.Early growth response factor 2(EGR2)has been shown to regulate microglial phagocytosis,but its specific role in NP remains unclear.This study aims to investigate how EGR2 modulates microglial phagocytosis and its involvement in NP,with the goal of identifying potential therapeutic targets.Methods:Adult male Sprague-Dawley(SD)rats were used to establish a chronic constriction injury(CCI)model of the sciatic nerve.Pain behaviors were assessed on days 1,3,7,10,and 14 post-surgery to confirm successful model induction.The temporal and spatial expression of EGR2 in the spinal cord was examined using real-time quantitative PCR(RT-qPCR),Western blotting,and immunofluorescence staining.Adeno-associated virus(AAV)was used to overexpress EGR2 in the spinal cord,and behavioral assessments were performed to evaluate the effects of EGR2 modulation of NP.CCI and lipopolysaccharide(LPS)models were established in animals and microglial cell lines,respectively,and changes in phagocytic activity were measured using RT-qPCR and fluorescent latex bead uptake assays.After confirming the involvement of microglial phagocytosis in NP,AAV was used to overexpress EGR2 in both in vivo and in vitro models,and phagocytic activity was further evaluated.Finally,eukaryotic transcriptome sequencing was conducted to screen differentially expressed mRNAs,followed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses to identify potential downstream effectors of EGR2.Results:The CCI model successfully induced NP.Following CCI,EGR2 expression in the spinal cord was upregulated in parallel with NP development.Overexpression of EGR2 via spinal AAV injection enhanced microglial phagocytic activity and increased pain hypersensitivity in rats.Both animal and cellular models showed that CCI or LPS stimulation enhanced microglial phagocytosis,which was further amplified by EGR2 overexpression.Transcriptomic analysis of spinal cord tissues from CCI rats overexpressing EGR2 revealed upregulation of numerous genes associated with microglial phagocytosis and pain regulation.Among them,Lag3 emerged as a potential downstream target of EGR2.Conclusion:EGR2 contributes to the maintenance of NP by enhancing microglial phagocytosis in the spinal dorsal horn.展开更多
Perfluorolyether is characterized by highly chemical inertness, oxidative stability, anticorrosion as well as radiation resistance. It can be used as lubricant especially in harsh environmental conditions. In this wor...Perfluorolyether is characterized by highly chemical inertness, oxidative stability, anticorrosion as well as radiation resistance. It can be used as lubricant especially in harsh environmental conditions. In this work, hexafluoropylene oxide was catalytically polymerized at low temperature using the methods of anionic polymerization, and perfluorolyethers were obtained with number-average degree of polymerization more than 15. CsF and RbF were used as catalysts and their catalytic activities were investigated. Experimental results show that perfluorolyethers with number-average molar masses up to 3 000 g/mol could be obtained using the two kinds of catalysts, respectively. As compared to CsF, the number-average degree of polymerization is higher and the relative molecular mass distribution interval is narrower when RbF is used as catalyst. The effect of factors such as impurities' content, reaction temperature and reaction time on the number-average degree of polymerization was also investigated. It is found that low impurities' content and low temperature are beneficial to the generation of high number-average degree of perfluorolyethers. The optimization reaction time is 24 h, and fiarther increase of reaction time does not significantly affect the average relative molecular mass. The product was characterized by IR, 19F NMR and GC-MS, and the catalytic mechanism was analyzed finally.展开更多
基金supported by the National Natural Science Foundation of China(22209040,22202063).
文摘The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts.
基金supported by the National Natural Science Foundation of China(82071249 and 81771207).
文摘Objective:Neuropathic pain(NP)is one of the most common forms of chronic pain,yet current treatment options are limited in effectiveness.Peripheral nerve injury activates spinal microglia,altering their inflammatory response and phagocytic functions,which contributes to the progression of NP.Most current research on NP focuses on microglial inflammation,with relatively little attention to their phagocytic function.Early growth response factor 2(EGR2)has been shown to regulate microglial phagocytosis,but its specific role in NP remains unclear.This study aims to investigate how EGR2 modulates microglial phagocytosis and its involvement in NP,with the goal of identifying potential therapeutic targets.Methods:Adult male Sprague-Dawley(SD)rats were used to establish a chronic constriction injury(CCI)model of the sciatic nerve.Pain behaviors were assessed on days 1,3,7,10,and 14 post-surgery to confirm successful model induction.The temporal and spatial expression of EGR2 in the spinal cord was examined using real-time quantitative PCR(RT-qPCR),Western blotting,and immunofluorescence staining.Adeno-associated virus(AAV)was used to overexpress EGR2 in the spinal cord,and behavioral assessments were performed to evaluate the effects of EGR2 modulation of NP.CCI and lipopolysaccharide(LPS)models were established in animals and microglial cell lines,respectively,and changes in phagocytic activity were measured using RT-qPCR and fluorescent latex bead uptake assays.After confirming the involvement of microglial phagocytosis in NP,AAV was used to overexpress EGR2 in both in vivo and in vitro models,and phagocytic activity was further evaluated.Finally,eukaryotic transcriptome sequencing was conducted to screen differentially expressed mRNAs,followed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses to identify potential downstream effectors of EGR2.Results:The CCI model successfully induced NP.Following CCI,EGR2 expression in the spinal cord was upregulated in parallel with NP development.Overexpression of EGR2 via spinal AAV injection enhanced microglial phagocytic activity and increased pain hypersensitivity in rats.Both animal and cellular models showed that CCI or LPS stimulation enhanced microglial phagocytosis,which was further amplified by EGR2 overexpression.Transcriptomic analysis of spinal cord tissues from CCI rats overexpressing EGR2 revealed upregulation of numerous genes associated with microglial phagocytosis and pain regulation.Among them,Lag3 emerged as a potential downstream target of EGR2.Conclusion:EGR2 contributes to the maintenance of NP by enhancing microglial phagocytosis in the spinal dorsal horn.
基金Project(53110704012) supported by the Fundamental Research Funds for the Central Universities,China
文摘Perfluorolyether is characterized by highly chemical inertness, oxidative stability, anticorrosion as well as radiation resistance. It can be used as lubricant especially in harsh environmental conditions. In this work, hexafluoropylene oxide was catalytically polymerized at low temperature using the methods of anionic polymerization, and perfluorolyethers were obtained with number-average degree of polymerization more than 15. CsF and RbF were used as catalysts and their catalytic activities were investigated. Experimental results show that perfluorolyethers with number-average molar masses up to 3 000 g/mol could be obtained using the two kinds of catalysts, respectively. As compared to CsF, the number-average degree of polymerization is higher and the relative molecular mass distribution interval is narrower when RbF is used as catalyst. The effect of factors such as impurities' content, reaction temperature and reaction time on the number-average degree of polymerization was also investigated. It is found that low impurities' content and low temperature are beneficial to the generation of high number-average degree of perfluorolyethers. The optimization reaction time is 24 h, and fiarther increase of reaction time does not significantly affect the average relative molecular mass. The product was characterized by IR, 19F NMR and GC-MS, and the catalytic mechanism was analyzed finally.