期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
FTIR光谱结合CNN测定不同温度下的反应组分含量
1
作者 韦怡 倪力伟 +1 位作者 许启跃 叶树亮 《化学研究与应用》 北大核心 2025年第9期2539-2546,共8页
为了解决不同反应温度下傅里叶变换中红外光谱(FTIR)模型无法共享的问题,提出了一种基于卷积神经网络(CNN)的定量温度校正模型。该模型由光谱和温度两个分支构成,光谱分支用于提取组分定量特征,温度分支用于进行温度补偿,将这两个分支... 为了解决不同反应温度下傅里叶变换中红外光谱(FTIR)模型无法共享的问题,提出了一种基于卷积神经网络(CNN)的定量温度校正模型。该模型由光谱和温度两个分支构成,光谱分支用于提取组分定量特征,温度分支用于进行温度补偿,将这两个分支输出的特征向量相加融合,再经过全连接层输出待测组分含量的预测值。以不同温度和质量比的丙烯酸、聚丙烯酸和水的混合溶液为实验样品,利用双输入CNN建立了丙烯酸和聚丙烯酸的定量模型,将其预测结果与偏最小二乘(PLS)单温度模型和PLS全温度模型结果进行比较。结果显示,双输入CNN模型对丙烯酸和聚丙烯酸的预测性能最优,其测试集的均方根误差相比PLS单温度模型分别降低了42.93%、66.61%,相比PLS全温度模型分别降低了34.65%、51.16%。基于已建模型对不同温度下的丙烯酸聚合反应进行定量分析,双输入CNN模型对丙烯酸的平均绝对误差为0.1748%,对聚丙烯酸的平均绝对误差为0.2818%。结果表明,双输入CNN模型具有较高的预测精度,可以对不同温度下的聚合反应进行准确有效地在线分析。 展开更多
关键词 傅里叶变换红外光谱 卷积神经网络 双输入融合模型 温度校正 反应组分定量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部