吉布斯相律的数学表达式为f=K-φ+2 (1)式中 f 为自由度数;K 为独立组分数;φ为相数;2代表了温度和压力两个因素对平衡系统的影响。独立组分数又称组分数,它可由下列关系式求得K=S-R-R′ (2)式中 S 为物种数;R 为独立化学反应数;对于 R...吉布斯相律的数学表达式为f=K-φ+2 (1)式中 f 为自由度数;K 为独立组分数;φ为相数;2代表了温度和压力两个因素对平衡系统的影响。独立组分数又称组分数,它可由下列关系式求得K=S-R-R′ (2)式中 S 为物种数;R 为独立化学反应数;对于 R′的含义,国内出版的物理化学教材的叙述却不尽相同,有的教材称 R′为独立浓度限制条件数。展开更多
In order to improve the reliability of the design and calculation of single piles under the combined vertical and lateral loads, the solutions were presented based on the subgrade reaction method, in which the ultimat...In order to improve the reliability of the design and calculation of single piles under the combined vertical and lateral loads, the solutions were presented based on the subgrade reaction method, in which the ultimate soil resistance was considered and the coefficient of subgrade reaction was assumed to be a constant. The corresponding computational program was developed using FORTRAN language. A comparison between the obtained solutions and the model test results was made to show the validity of the obtained solutions. The calculation results indicate that both the maximum lateral displacement and bending moment increase with the increase of the vertical and lateral loads and the pile length above ground, while decrease as the pile stiffness, the coefficient of subgrade reaction and the yielding displacement of soil increase. It is also shown that the pile head condition controls the pile responses and the vertical load may cause the instability problem to the pile. In general, the proposed method can be employed to calculate the pile responses independent of the magnitude of the pile deflection.展开更多
Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute tran...Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.展开更多
The mechanism of oxygen pressure acid leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation was investigated in this study.Artificial sphalerite was fabricated with varying amounts of iron content via the ...The mechanism of oxygen pressure acid leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation was investigated in this study.Artificial sphalerite was fabricated with varying amounts of iron content via the sintering of ZnS and FeS and used for the pressure acid leaching experiment.The variations in the potential of the pressure leaching system were investigated by using a self-designed potential autoclave.The results showed that compared to the non-iron sphalerite,there was a violent redox reaction between the 25.70%Fe-artificial sphalerite and dissolved oxygen during the process of pressure leaching;and the catalytic mechanism was attributed to the redox couple Fe^3+/Fe^2+,where Fe3+oxidizes the H2S gas film and the reduced Fe2+state is subsequently oxidized by the dissolved oxygen.Furthermore,the effect of temperature,H2SO4 concentration,and oxygen partial pressure on the artificial sphalerite with different iron contents was studied.The sphalerite samples with iron content were observed to dissolve more easily in sulfuric acid compared to the non-iron samples.Moreover,the activation energy of artificial sphalerite was observed to be lower in the sample with 25.70%iron content(22.26 kJ/mol)compared to that with no iron(32.31 kJ/mol);and the apparent reaction orders were obtained with respect to H2SO4 concentration(1.10 and 1.36)and oxygen partial pressure(1.29 and 1.41),respectively.A comprehensive kinetic model was developed on the basis of the experimental data and the fitted leaching ratio plot;and the kinetic equations for the leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation were determined.展开更多
The luminance in the road tunnel threshold zone attracts broad attention due to its enormous energy consumption and direct influence on tunnel transportation security.Current lighting design methods in threshold zones...The luminance in the road tunnel threshold zone attracts broad attention due to its enormous energy consumption and direct influence on tunnel transportation security.Current lighting design methods in threshold zones mostly adopt the reduction coefficient method.However,the determination of reduction coefficient k simply considers tunnel design speed and flow rate,while excluding outside tunnel luminance and threshold zone color temperature and luminance,which have a major impact on driver visual adaptation.Existing problems in the determination of k value are analyzed;a visual performance experiment is utilized;and the reaction time of drivers in changeable outside tunnel luminance and threshold zone color temperature and luminance conditions is obtained;thus,the equations concerning reduction coefficient variation law are derived.In the end,a comparative analysis is made of the k values of the reduction coefficient stipulated by various norms under different color temperature conditions.展开更多
Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate ...Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H_2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H_2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl_3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H_2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl_3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm.展开更多
The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficien...The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) at a linear rate below850 °C, with activation energy of 137.18 k J/mol, and the reaction rate constant can be expressed as k=206901exp(-16.5/T). Stibnite can be decomposed into Sb and sulfur at temperature above 850 °C in a nitrogen atmosphere. However, in the presence of oxygen,stibnite is oxidized into Sb and SO2 gas at high temperature. Otherwise, Sb is oxidized quickly into antimony oxides such as Sb2O3 and Sb O2, while Sb2O3 can be volatilized efficiently at high temperature.展开更多
Present work reports chemically reacting Darcy-Forchheimer flow of nanotubes.Water is utilized as base liquid while carbon nanotubes are considered nanomaterial.An exponential stretchable curved surface flow is origin...Present work reports chemically reacting Darcy-Forchheimer flow of nanotubes.Water is utilized as base liquid while carbon nanotubes are considered nanomaterial.An exponential stretchable curved surface flow is originated.Heat source is present.Xue relation of nanoliquid is employed to explore the feature of CNTs (single and multi-wall).Transformation technique is adopted in order to achieve non-linear ordinary differential systems.The governing systems are solved numerically.Effects of involved parameters on flow,temperature,concentration,heat transfer rate (Nusselt number) with addition of skin friction coefficient are illustrated graphically.Decay in velocity is noted with an increment in Forchheimer number and porosity parameter while opposite impact is seen for temperature.Moreover,role of MWCNTs is prominent when compared with SWCNTs.展开更多
The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous ...The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous rate-based kinetic model and the NRTL activity coefficient model. The results show that the unstable node branch emerges from the ethyl acetate/water edge, moving toward the chemical equilibrium surface with the increase of Damkoeler value (D), and the node reaches the ternary reactive azeotrope when D-∞ eventually. Conceptual design for the ethyl acetate synthesis of reactive distillation based on the residue curve maps is presented at last.展开更多
Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious ...Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.展开更多
基金Foundation item: Projects(50708093, 50808159) supported by the National Natural Science Foundation of China
文摘In order to improve the reliability of the design and calculation of single piles under the combined vertical and lateral loads, the solutions were presented based on the subgrade reaction method, in which the ultimate soil resistance was considered and the coefficient of subgrade reaction was assumed to be a constant. The corresponding computational program was developed using FORTRAN language. A comparison between the obtained solutions and the model test results was made to show the validity of the obtained solutions. The calculation results indicate that both the maximum lateral displacement and bending moment increase with the increase of the vertical and lateral loads and the pile length above ground, while decrease as the pile stiffness, the coefficient of subgrade reaction and the yielding displacement of soil increase. It is also shown that the pile head condition controls the pile responses and the vertical load may cause the instability problem to the pile. In general, the proposed method can be employed to calculate the pile responses independent of the magnitude of the pile deflection.
基金Projects(50934002,51104011) supported by the National Natural Science Foundation of ChinaProject(IRT0950) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese UniversityProject(20100480200) supported by China Postdoctoral Science Foundation
文摘Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.
基金Projects(51804136,51764016)supported by the National Natural Science Foundation of ChinaProject(U1402271)supported by the Joint Funds of the National Natural Science Foundation of China+2 种基金Project(20181BAB216017)supported by the Jiangxi Provincial Natural Science Foundation,ChinaProject(GK-201803)supported by the Research Fund Program of State Key Laboratory of Rare Metals Separation and Comprehensive Utilization,ChinaProjects(yy2016001,yy2016012)supported by the Research Fund Program of the State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources,China。
文摘The mechanism of oxygen pressure acid leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation was investigated in this study.Artificial sphalerite was fabricated with varying amounts of iron content via the sintering of ZnS and FeS and used for the pressure acid leaching experiment.The variations in the potential of the pressure leaching system were investigated by using a self-designed potential autoclave.The results showed that compared to the non-iron sphalerite,there was a violent redox reaction between the 25.70%Fe-artificial sphalerite and dissolved oxygen during the process of pressure leaching;and the catalytic mechanism was attributed to the redox couple Fe^3+/Fe^2+,where Fe3+oxidizes the H2S gas film and the reduced Fe2+state is subsequently oxidized by the dissolved oxygen.Furthermore,the effect of temperature,H2SO4 concentration,and oxygen partial pressure on the artificial sphalerite with different iron contents was studied.The sphalerite samples with iron content were observed to dissolve more easily in sulfuric acid compared to the non-iron samples.Moreover,the activation energy of artificial sphalerite was observed to be lower in the sample with 25.70%iron content(22.26 kJ/mol)compared to that with no iron(32.31 kJ/mol);and the apparent reaction orders were obtained with respect to H2SO4 concentration(1.10 and 1.36)and oxygen partial pressure(1.29 and 1.41),respectively.A comprehensive kinetic model was developed on the basis of the experimental data and the fitted leaching ratio plot;and the kinetic equations for the leaching of sphalerite catalyzed by Fe^3+/Fe^2+self-precipitation were determined.
基金Project(51278507)supported by the National Natural Science Foundation of ChinaProject(cstc2017jcyjAX0346)supported by Chongqing Association for Science and Technology,China
文摘The luminance in the road tunnel threshold zone attracts broad attention due to its enormous energy consumption and direct influence on tunnel transportation security.Current lighting design methods in threshold zones mostly adopt the reduction coefficient method.However,the determination of reduction coefficient k simply considers tunnel design speed and flow rate,while excluding outside tunnel luminance and threshold zone color temperature and luminance,which have a major impact on driver visual adaptation.Existing problems in the determination of k value are analyzed;a visual performance experiment is utilized;and the reaction time of drivers in changeable outside tunnel luminance and threshold zone color temperature and luminance conditions is obtained;thus,the equations concerning reduction coefficient variation law are derived.In the end,a comparative analysis is made of the k values of the reduction coefficient stipulated by various norms under different color temperature conditions.
基金Project(12C0379) supported by Scientific Research Fund of Hunan Province,China
文摘Three-dimensional model of chemical vapor deposition reaction in polysilicon reduction furnace was established by considering mass, momentum and energy transfer simultaneously. Then, CFD software was used to simulate the flow, heat transfer and chemical reaction process in reduction furnace and to analyze the change law of deposition characteristic along with the H_2 mole fraction, silicon rod height and silicon rod diameter. The results show that with the increase of H_2 mole fraction, silicon growth rate increases firstly and then decreases. On the contrary, SiHCl_3 conversion rate and unit energy consumption decrease firstly and then increase. Silicon production rate increases constantly. The optimal H_2 mole fraction is 0.8-0.85. With the growth of silicon rod height, Si HCl3 conversion rate, silicon production rate and silicon growth rate increase, while unit energy consumption decreases. In terms of chemical reaction, the higher the silicon rod is, the better the performance is. In the view of the top-heavy situation, the actual silicon rod height is limited to be below 3 m. With the increase of silicon rod diameter, silicon growth rate decreases firstly and then increases. Besides, SiHCl_3 conversion rate and silicon production rate increase, while unit energy consumption first decreases sharply, then becomes steady. In practice, the bigger silicon rod diameter is more suitable. The optimal silicon rod diameter must be over 120 mm.
基金Project(51204210) supported by the National Natural Science Foundation of ChinaProject(2011AA061001) supported by the National High Technology Research and Development Program of ChinaProject(2012BAC12B04) supported by the National Science&Technology Pillar Program during Twelfth Five-Year Plan of China
文摘The volatilization of stibnite(Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) at a linear rate below850 °C, with activation energy of 137.18 k J/mol, and the reaction rate constant can be expressed as k=206901exp(-16.5/T). Stibnite can be decomposed into Sb and sulfur at temperature above 850 °C in a nitrogen atmosphere. However, in the presence of oxygen,stibnite is oxidized into Sb and SO2 gas at high temperature. Otherwise, Sb is oxidized quickly into antimony oxides such as Sb2O3 and Sb O2, while Sb2O3 can be volatilized efficiently at high temperature.
文摘Present work reports chemically reacting Darcy-Forchheimer flow of nanotubes.Water is utilized as base liquid while carbon nanotubes are considered nanomaterial.An exponential stretchable curved surface flow is originated.Heat source is present.Xue relation of nanoliquid is employed to explore the feature of CNTs (single and multi-wall).Transformation technique is adopted in order to achieve non-linear ordinary differential systems.The governing systems are solved numerically.Effects of involved parameters on flow,temperature,concentration,heat transfer rate (Nusselt number) with addition of skin friction coefficient are illustrated graphically.Decay in velocity is noted with an increment in Forchheimer number and porosity parameter while opposite impact is seen for temperature.Moreover,role of MWCNTs is prominent when compared with SWCNTs.
基金Project(2008-XY-6) supported by the Development of Science and Technology Start-up Fund of Fuzhou University, ChinaProject(XRC-0826) supported by the Talents Fund of Fuzhou University, China
文摘The residue curve maps are considered as a powerful tool for the preliminary design of reactive distillation. The residue curve maps of ethyl acetate synthesis reaction were calculated based on the pseudo-homogeneous rate-based kinetic model and the NRTL activity coefficient model. The results show that the unstable node branch emerges from the ethyl acetate/water edge, moving toward the chemical equilibrium surface with the increase of Damkoeler value (D), and the node reaches the ternary reactive azeotrope when D-∞ eventually. Conceptual design for the ethyl acetate synthesis of reactive distillation based on the residue curve maps is presented at last.
基金Project(51102035)supported by the National Natural Science Foundation of China
文摘Functionalized graphene nano-sheets(FGN) of 0.01%-0.05%(mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.