针对磁化焙烧冷却过程开展了研究,考察了磁铁矿氧化反应分数和反应速率的变化规律,并采用模型匹配法进行了氧化动力学分析.结果表明:磁化焙烧冷却过程中,氧化温度对反应分数和反应速率均有着显著的影响;相同氧化时间下,反应分数和反应...针对磁化焙烧冷却过程开展了研究,考察了磁铁矿氧化反应分数和反应速率的变化规律,并采用模型匹配法进行了氧化动力学分析.结果表明:磁化焙烧冷却过程中,氧化温度对反应分数和反应速率均有着显著的影响;相同氧化时间下,反应分数和反应速率随氧化温度的升高而增加;不同氧化温度下,反应分数和反应速率随反应时间变化呈现出相同的变化规律;磁铁矿氧化过程动力学机理函数为n=4的AvramiErofee方程,氧化反应的表观活化能为135. 2 k J·mol,指前因子为6. 19×1010min-1.展开更多
Aris and Amundson studied a chemical reactor and obtained the two equationsDaoud showed that at most one limit cycle may exist in the region of interest. Itis showed in this paper that other singular points exist and ...Aris and Amundson studied a chemical reactor and obtained the two equationsDaoud showed that at most one limit cycle may exist in the region of interest. Itis showed in this paper that other singular points exist and that a stable limitt cycle existsaround the singularity (1/2, 2) when K∈(9-δ, 9).展开更多
By taking the surface chemical reactions as the rate-controlling step, a possible reaction mechanism for ethylene epoxidation to synthesize ethylene oxide over the A-type silver catalyst was developed, while it was as...By taking the surface chemical reactions as the rate-controlling step, a possible reaction mechanism for ethylene epoxidation to synthesize ethylene oxide over the A-type silver catalyst was developed, while it was assumed that the epoxidation reaction would take place between ethylene and the un-dissociated adsorbed oxygen O2 a on the solo active sites, while the deep oxidation would occur between ethylene and the dissociated adsorbed oxygen Oa on the adjacent multi-active sites. In order to describe the effect of 1,2-C2H4Cl2(EDC) inhibitor on the ethylene epoxidation process, the reversible reactions between EDC and vinyl chloride(VC) on the active sites of silver catalyst was introduced. According to the assumed mechanism, the hyperbolic macro-kinetic model of ethylene epoxidation over the A-type silver catalyst was established, and the macrokinetic experiments were carried out in an internal-recycle gradientless reactor operating at a pressure of 2.1 MPa and a temperature in the range of 217.8—249.0 ℃, with the gas composition(molar fraction) consisting of 15.82%—34.65% C2H4, 2.55%—7.80% O2, 0.88%—6.15% CO2, 0.15—2.61 μmol/mol of 1,2-C2H4Cl2 and 0.14—1.28 μmol/mol of C2H3 Cl. By means of the Simplex Optimal Method, the parameters of the macrokinetic models were estimated. Statistical test showed that the macrokinetic models developed for the A-type silver catalyst agree well with the experimental results.展开更多
文摘针对磁化焙烧冷却过程开展了研究,考察了磁铁矿氧化反应分数和反应速率的变化规律,并采用模型匹配法进行了氧化动力学分析.结果表明:磁化焙烧冷却过程中,氧化温度对反应分数和反应速率均有着显著的影响;相同氧化时间下,反应分数和反应速率随氧化温度的升高而增加;不同氧化温度下,反应分数和反应速率随反应时间变化呈现出相同的变化规律;磁铁矿氧化过程动力学机理函数为n=4的AvramiErofee方程,氧化反应的表观活化能为135. 2 k J·mol,指前因子为6. 19×1010min-1.
文摘Aris and Amundson studied a chemical reactor and obtained the two equationsDaoud showed that at most one limit cycle may exist in the region of interest. Itis showed in this paper that other singular points exist and that a stable limitt cycle existsaround the singularity (1/2, 2) when K∈(9-δ, 9).
文摘By taking the surface chemical reactions as the rate-controlling step, a possible reaction mechanism for ethylene epoxidation to synthesize ethylene oxide over the A-type silver catalyst was developed, while it was assumed that the epoxidation reaction would take place between ethylene and the un-dissociated adsorbed oxygen O2 a on the solo active sites, while the deep oxidation would occur between ethylene and the dissociated adsorbed oxygen Oa on the adjacent multi-active sites. In order to describe the effect of 1,2-C2H4Cl2(EDC) inhibitor on the ethylene epoxidation process, the reversible reactions between EDC and vinyl chloride(VC) on the active sites of silver catalyst was introduced. According to the assumed mechanism, the hyperbolic macro-kinetic model of ethylene epoxidation over the A-type silver catalyst was established, and the macrokinetic experiments were carried out in an internal-recycle gradientless reactor operating at a pressure of 2.1 MPa and a temperature in the range of 217.8—249.0 ℃, with the gas composition(molar fraction) consisting of 15.82%—34.65% C2H4, 2.55%—7.80% O2, 0.88%—6.15% CO2, 0.15—2.61 μmol/mol of 1,2-C2H4Cl2 and 0.14—1.28 μmol/mol of C2H3 Cl. By means of the Simplex Optimal Method, the parameters of the macrokinetic models were estimated. Statistical test showed that the macrokinetic models developed for the A-type silver catalyst agree well with the experimental results.