模块化多电平换流器高压直流输电(modular multilevel converter based HVDC,MMC-HVDC)面临半桥子模块拓扑不能清除直流故障电流和子模块电容电压排序计算量过大、对传感器实时性要求高等问题。有文献针对低压领域MMC应用中存在的负...模块化多电平换流器高压直流输电(modular multilevel converter based HVDC,MMC-HVDC)面临半桥子模块拓扑不能清除直流故障电流和子模块电容电压排序计算量过大、对传感器实时性要求高等问题。有文献针对低压领域MMC应用中存在的负荷电流过大、电容电压监测困难等问题,提出并联全桥子模块(paralleled full bridge sub-module,P-FBSM)拓扑,对MMC-HVDC具有借鉴意义。该文从P-FBSM结构出发,分析其开关状态集,进而推导以开关函数表示的并联全桥MMC桥臂模型;基于最近电平逼近调制,设计P-FBSM动态分配均压控制策略,实现无需子模块电容电压的自均压控制,有效减小控制器计算量、降低传感器实时性要求。最后,在PSCAD/EMTDC中的电磁暂态仿真结果表明,采用所提均压控制策略可同时实现子模块电容电压的自均衡和直流故障电流快速清除。展开更多
为了有效减小电网换相高压直流输电(line-commutatedconverter based high voltage direct current,LCC-HVDC)的换相失败概率,文中提出一种基于全桥晶闸管型耗能子模块的新型LCC换流器拓扑,可有效抑制暂态直流电流的增长,降低换相失败...为了有效减小电网换相高压直流输电(line-commutatedconverter based high voltage direct current,LCC-HVDC)的换相失败概率,文中提出一种基于全桥晶闸管型耗能子模块的新型LCC换流器拓扑,可有效抑制暂态直流电流的增长,降低换相失败概率。文中给出子模块的不同工作模式,提出子模块与阀臂之间的协调控制策略及子模块参数的设计方法,分析耗能电阻的能耗及散热问题。最后在PSCAD中进行仿真分析,结果表明,所设计的控制参数是合理的,子模块电压电流应力均在合理范围内,电阻的能耗也可以满足要求;而且,所提新型LCC换流器拓扑可以有效抑制换相失败,并改善系统的暂态特性。展开更多
当逆变侧交流系统发生故障引发换相失败时会导致送端母线出现过电压,特别是针对于弱送端交流电网,其过电压情形更加严重。提出了一种基于晶闸管全桥耗能子模块(thyristor full bridge power-consumption sub module,PCT-FBSM)的直流斩波...当逆变侧交流系统发生故障引发换相失败时会导致送端母线出现过电压,特别是针对于弱送端交流电网,其过电压情形更加严重。提出了一种基于晶闸管全桥耗能子模块(thyristor full bridge power-consumption sub module,PCT-FBSM)的直流斩波器(DC Chopper)拓扑结构,可以有效地抑制由换相失败引发的送端暂态过电压。文中首先分析了DC Chopper抑制过电压的机理,介绍了DC Chopper子模块的6种工作模式,然后设计了子模块在不同工况下的控制策略,并提出了子模块参数的设计方法,最后在PSCAD/EMTDC环境中搭建了相应的仿真模型,对所提拓扑结构对暂态过电压的抑制效果以及系统的运行特性进行了仿真分析,仿真结果表明所提DC Chopper可以有效抑制弱送端电网的暂态过电压。展开更多
文摘模块化多电平换流器高压直流输电(modular multilevel converter based HVDC,MMC-HVDC)面临半桥子模块拓扑不能清除直流故障电流和子模块电容电压排序计算量过大、对传感器实时性要求高等问题。有文献针对低压领域MMC应用中存在的负荷电流过大、电容电压监测困难等问题,提出并联全桥子模块(paralleled full bridge sub-module,P-FBSM)拓扑,对MMC-HVDC具有借鉴意义。该文从P-FBSM结构出发,分析其开关状态集,进而推导以开关函数表示的并联全桥MMC桥臂模型;基于最近电平逼近调制,设计P-FBSM动态分配均压控制策略,实现无需子模块电容电压的自均压控制,有效减小控制器计算量、降低传感器实时性要求。最后,在PSCAD/EMTDC中的电磁暂态仿真结果表明,采用所提均压控制策略可同时实现子模块电容电压的自均衡和直流故障电流快速清除。
文摘为了有效减小电网换相高压直流输电(line-commutatedconverter based high voltage direct current,LCC-HVDC)的换相失败概率,文中提出一种基于全桥晶闸管型耗能子模块的新型LCC换流器拓扑,可有效抑制暂态直流电流的增长,降低换相失败概率。文中给出子模块的不同工作模式,提出子模块与阀臂之间的协调控制策略及子模块参数的设计方法,分析耗能电阻的能耗及散热问题。最后在PSCAD中进行仿真分析,结果表明,所设计的控制参数是合理的,子模块电压电流应力均在合理范围内,电阻的能耗也可以满足要求;而且,所提新型LCC换流器拓扑可以有效抑制换相失败,并改善系统的暂态特性。
文摘当逆变侧交流系统发生故障引发换相失败时会导致送端母线出现过电压,特别是针对于弱送端交流电网,其过电压情形更加严重。提出了一种基于晶闸管全桥耗能子模块(thyristor full bridge power-consumption sub module,PCT-FBSM)的直流斩波器(DC Chopper)拓扑结构,可以有效地抑制由换相失败引发的送端暂态过电压。文中首先分析了DC Chopper抑制过电压的机理,介绍了DC Chopper子模块的6种工作模式,然后设计了子模块在不同工况下的控制策略,并提出了子模块参数的设计方法,最后在PSCAD/EMTDC环境中搭建了相应的仿真模型,对所提拓扑结构对暂态过电压的抑制效果以及系统的运行特性进行了仿真分析,仿真结果表明所提DC Chopper可以有效抑制弱送端电网的暂态过电压。