针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimensi...针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimension Exchange,APE-DE)。首先,设计了一种自扰动补偿策略,通过个体的空间位置来引导其搜索方向,有效避免了算法易陷入局部最优的困境。然后,提出了一种极性维度交互策略,用于提升算法多样性,一旦种群被检测出停滞,将启动相应的增强方案。最后,提出了一种自适应参数控制策略,通过小波基函数和适应度分布偏差信息实时捕捉种群适应度的变化,并据此动态调整算法参数。为了验证APE-DE的性能,在被广泛使用的IEEE CEC2017数据集上进行了实验,以验证算法面对多模态及复杂测试环境下的性能。实验结果表明,与8种最先进的差分进化变体相比,APE-DE在收敛精度和收敛速度方面均展现出了显著的优势。此外,为了评估APE-DE在解决现实问题中的有效性,将所提算法应用于光伏模型的参数识别问题。展开更多
针对标准群搜索优化算法在解决一些复杂优化问题时容易陷入局部最优且收敛速度较慢的问题,提出一种应用反向学习和差分进化的群搜索优化算法(Group Search Optimization with Opposition-based Learning and Differential Evolution,OBD...针对标准群搜索优化算法在解决一些复杂优化问题时容易陷入局部最优且收敛速度较慢的问题,提出一种应用反向学习和差分进化的群搜索优化算法(Group Search Optimization with Opposition-based Learning and Differential Evolution,OBDGSO)。该算法利用一般动态反向学习机制产生反向种群,扩大算法的全局勘探范围;对种群中较优解个体实施差分进化的变异操作,实现在较优解附近的局部开采,以改善算法的求解精度和收敛速度。这两种策略在GSO算法中相互协同,以更好地平衡算法的全局搜索能力和局部开采能力。将OBDGSO算法和另外4种群智能算法在12个基准测试函数上进行实验,结果表明OBDGSO算法在求解精度和收敛速度上具有较显著的性能优势。展开更多
针对传统灰狼优化算法位置更新时勘探与开发失衡,收敛速度慢且陷入局部最优的问题,提出一种改进的灰狼算法(balanced grey wolf algorithm based on fitness back learning,BGWO),引入非线性控制参数,增强算法前期勘探能力,加速收敛;在...针对传统灰狼优化算法位置更新时勘探与开发失衡,收敛速度慢且陷入局部最优的问题,提出一种改进的灰狼算法(balanced grey wolf algorithm based on fitness back learning,BGWO),引入非线性控制参数,增强算法前期勘探能力,加速收敛;在种群迭代阶段采用重心反向学习的最优适应度权重更新策略,平衡算法的勘探与开发。16组基准函数测试结果表明,改进后算法能自适应跳出局部最优,在加快算法收敛速度的同时提高全局收敛能力与精度。将BGWO应用于PV型旋风分离器粒级效率GBDT(gradient boosting decision tree)的建模,提高了GBDT的精度,模型相关系数0.980,均方误差0.00079,BGWO-GBDT与GBDT、PSO-GBDT和GWO-GBDT相对比,建模精度和稳定性明显提高,验证了BGWO的有效性。展开更多
文摘针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimension Exchange,APE-DE)。首先,设计了一种自扰动补偿策略,通过个体的空间位置来引导其搜索方向,有效避免了算法易陷入局部最优的困境。然后,提出了一种极性维度交互策略,用于提升算法多样性,一旦种群被检测出停滞,将启动相应的增强方案。最后,提出了一种自适应参数控制策略,通过小波基函数和适应度分布偏差信息实时捕捉种群适应度的变化,并据此动态调整算法参数。为了验证APE-DE的性能,在被广泛使用的IEEE CEC2017数据集上进行了实验,以验证算法面对多模态及复杂测试环境下的性能。实验结果表明,与8种最先进的差分进化变体相比,APE-DE在收敛精度和收敛速度方面均展现出了显著的优势。此外,为了评估APE-DE在解决现实问题中的有效性,将所提算法应用于光伏模型的参数识别问题。
文摘针对标准群搜索优化算法在解决一些复杂优化问题时容易陷入局部最优且收敛速度较慢的问题,提出一种应用反向学习和差分进化的群搜索优化算法(Group Search Optimization with Opposition-based Learning and Differential Evolution,OBDGSO)。该算法利用一般动态反向学习机制产生反向种群,扩大算法的全局勘探范围;对种群中较优解个体实施差分进化的变异操作,实现在较优解附近的局部开采,以改善算法的求解精度和收敛速度。这两种策略在GSO算法中相互协同,以更好地平衡算法的全局搜索能力和局部开采能力。将OBDGSO算法和另外4种群智能算法在12个基准测试函数上进行实验,结果表明OBDGSO算法在求解精度和收敛速度上具有较显著的性能优势。
文摘针对传统灰狼优化算法位置更新时勘探与开发失衡,收敛速度慢且陷入局部最优的问题,提出一种改进的灰狼算法(balanced grey wolf algorithm based on fitness back learning,BGWO),引入非线性控制参数,增强算法前期勘探能力,加速收敛;在种群迭代阶段采用重心反向学习的最优适应度权重更新策略,平衡算法的勘探与开发。16组基准函数测试结果表明,改进后算法能自适应跳出局部最优,在加快算法收敛速度的同时提高全局收敛能力与精度。将BGWO应用于PV型旋风分离器粒级效率GBDT(gradient boosting decision tree)的建模,提高了GBDT的精度,模型相关系数0.980,均方误差0.00079,BGWO-GBDT与GBDT、PSO-GBDT和GWO-GBDT相对比,建模精度和稳定性明显提高,验证了BGWO的有效性。