期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
应用小生境和反向学习策略的量子粒子群算法 被引量:7
1
作者 李志鹏 李卫忠 +2 位作者 江洋 杜瑞超 刘唐 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第1期181-187,共7页
针对粒子群算法收敛速度慢、容易陷入局部最优等缺陷,提出一种应用小生境和反向学习策略的量子粒子群算法。以可拓理论为基础构造算法模型,在群体中划分出小生境,并设置共享区,对共享区粒子实施适应度动态共享,可有效防止算法过早收敛,... 针对粒子群算法收敛速度慢、容易陷入局部最优等缺陷,提出一种应用小生境和反向学习策略的量子粒子群算法。以可拓理论为基础构造算法模型,在群体中划分出小生境,并设置共享区,对共享区粒子实施适应度动态共享,可有效防止算法过早收敛,增强全局搜索能力;为深度挖掘全局最优粒子,引入精英反向学习策略,增强解空间的开发,提高算法精度。通过测试函数评估算法性能,实验结果表明算法的优化性能得到了改善。 展开更多
关键词 量子粒子群 可拓理论 小生境 反向学习策略 适应度共享
在线阅读 下载PDF
融合学习策略和邻域搜索的飞蛾火焰算法 被引量:4
2
作者 郭佳丽 王秋萍 王晓峰 《计算机工程与应用》 CSCD 北大核心 2021年第12期170-179,共10页
为进一步降低基本飞蛾火焰算法陷入局部最优的概率并提高种群多样性,提出一种融合学习策略和邻域搜索的飞蛾火焰算法。将拟反向学习策略嵌入到火焰更新过程,有助于火焰从局部最优中跳出,并且提供了更高的机会接近问题的未知最优解。对... 为进一步降低基本飞蛾火焰算法陷入局部最优的概率并提高种群多样性,提出一种融合学习策略和邻域搜索的飞蛾火焰算法。将拟反向学习策略嵌入到火焰更新过程,有助于火焰从局部最优中跳出,并且提供了更高的机会接近问题的未知最优解。对飞蛾种群基于适应度值分群,其中一个群采用排序配对学习策略以实现个体间的信息交流,另一个群采用邻域搜索策略以增加种群多样性,这种并行计算能更快地提升整个种群的质量。选取CEC2017测试函数进行数值实验,测试结果和统计分析表明了所提算法具有更高的求解精度和稳定性。将所提算法用于求解OR-Library中的标准实例,结果验证了所提算法对作业车间调度问题是有效的。 展开更多
关键词 飞蛾火焰算法 作业车间调度问题 反向学习策略 排序配对学习策略 邻域搜索策略
在线阅读 下载PDF
基于混合策略改进的捕鱼优化算法及其工程应用
3
作者 李耘霆 朱良宽 赵红阳 《制造技术与机床》 北大核心 2025年第8期192-204,共13页
针对捕鱼优化算法(catch fish optimization algorithm,CFOA)容易陷入局部最优、迭代后期种群多样性单一等问题,提出一种多策略融合改进的捕鱼优化算法。首先,通过反向学习策略进行种群初始化,以提高初始种群的质量;其次,引入组长趋同... 针对捕鱼优化算法(catch fish optimization algorithm,CFOA)容易陷入局部最优、迭代后期种群多样性单一等问题,提出一种多策略融合改进的捕鱼优化算法。首先,通过反向学习策略进行种群初始化,以提高初始种群的质量;其次,引入组长趋同自适应组队策略,强化算法优势经验的学习;最后,通过引入Lévy飞行螺旋搜索策略,改善集体捕获阶段算法跳出局部最优值的能力;改进算法与灰狼优化(grey wolf optimization,GWO)算法、麻雀优化算法(sparrow search algorithm,SSA)、鲸鱼优化算法(whale optimization algorithm,WOA)、正弦余弦优化算法(sine cosine algorithm,SCA)等7种算法在15个基准测试函数上进行了仿真对比分析。试验结果表明,改进算法在求解精度和收敛速度等方面有较好提升。此外,3个工程设计优化问题的仿真试验进一步验证了改进算法在处理工程优化问题上的优越性。 展开更多
关键词 捕鱼优化算法 反向学习策略 混合策略 Lévy飞行 螺旋搜索 组长趋同自适应组队策略
在线阅读 下载PDF
基于精英反向学习的萤火虫k-means改进算法 被引量:11
4
作者 汤文亮 张平 汤树芳 《计算机工程与设计》 北大核心 2019年第11期3164-3169,共6页
为解决传统k-means聚类算法在聚类精度及中心点选取方面的问题,提出一种基于精英反向学习的萤火虫k-means改进算法。针对k-means算法的弱点,利用萤火虫优化算法具有较强全局搜索能力这一特性,使用精英反向学习策略对萤火虫进行改进,扩... 为解决传统k-means聚类算法在聚类精度及中心点选取方面的问题,提出一种基于精英反向学习的萤火虫k-means改进算法。针对k-means算法的弱点,利用萤火虫优化算法具有较强全局搜索能力这一特性,使用精英反向学习策略对萤火虫进行改进,扩大萤火虫的搜索范围并提高收敛速度,对萤火虫的吸引度和步长因子进行改进,提升聚类效率。将改进算法运用到UCI标准数据集进行聚类仿真实验,该算法在寻优精度和收敛速度上有更好的结果,验证了其有效性。 展开更多
关键词 萤火虫算法 K-MEANS算法 精英反向学习 反向学习策略 精英反向
在线阅读 下载PDF
一种精英反向学习的萤火虫优化算法 被引量:10
5
作者 魏伟一 文雅宏 《智能系统学报》 CSCD 北大核心 2017年第5期710-716,共7页
为了提高传统萤火虫算法的收敛速度和求解精度,提出了一种精英反向学习的萤火虫优化算法。通过反向学习策略构造精英群体,在精英群体构成的区间上求普通群体的反向解,增加了群体的多样性,提高了算法的收敛速度;同时,为了避免最优个体陷... 为了提高传统萤火虫算法的收敛速度和求解精度,提出了一种精英反向学习的萤火虫优化算法。通过反向学习策略构造精英群体,在精英群体构成的区间上求普通群体的反向解,增加了群体的多样性,提高了算法的收敛速度;同时,为了避免最优个体陷入局部最优,使整个群体在搜索过程中出现停滞,提出了差分演化变异策略;最后,提出了一种线性递减的自适应步长来平衡算法的开发能力。实验结果表明,算法在收敛速度和收敛精度上有更好的效果。 展开更多
关键词 萤火虫算法 精英反向学习 优化算法 精英群体 反向 反向学习策略 差分演化变异 自适应步长
在线阅读 下载PDF
透镜成像反向学习的精英池侏儒猫鼬优化算法 被引量:8
6
作者 贾鹤鸣 陈丽珍 +3 位作者 力尚龙 刘庆鑫 吴迪 卢程浩 《计算机工程与应用》 CSCD 北大核心 2023年第24期131-139,共9页
侏儒猫鼬优化算法(dwarf mongoose optimization,DMO)是新提出的一种元启发式算法,该算法具有较强的全局探索能力和稳定性,但由于原始算法中仅依靠雌性首领带领整个猫鼬种群进行搜索,会产生收敛速度较慢、易陷入局部最优以及探索阶段与... 侏儒猫鼬优化算法(dwarf mongoose optimization,DMO)是新提出的一种元启发式算法,该算法具有较强的全局探索能力和稳定性,但由于原始算法中仅依靠雌性首领带领整个猫鼬种群进行搜索,会产生收敛速度较慢、易陷入局部最优以及探索阶段与开发阶段之间的平衡较差等问题。针对上述问题,提出一种融合透镜成像反向学习的精英池侏儒猫鼬优化算法(improved dwarf mongoose optimization,IDMO),采用透镜成像反向学习策略,避免算法在迭代过程中陷入局部最优,增强算法的探索能力;在阿尔法组觅食时引入精英池策略,提高了算法的收敛精度,进一步增强算法探索能力。通过基准测试函数进行实验,表明IDMO算法具有良好的寻优性能和鲁棒性,且算法收敛速度得到显著提升。通过对汽车碰撞优化问题的求解,进一步验证了IDMO算法具有良好的适用性和有效性。 展开更多
关键词 侏儒猫鼬优化算法 元启发式算法 透镜成像反向学习策略 精英池策略
在线阅读 下载PDF
多策略改进麻雀搜索算法及工程应用
7
作者 匡振宇 张俊 +1 位作者 王艳红 谭园园 《运筹与管理》 CSSCI CSCD 北大核心 2024年第11期58-64,共7页
针对麻雀搜索算法容易陷入局部最优、迭代后期种群多样性单一等缺点,提出一种多策略结合的麻雀搜索算法。首先利用低差异序列、混沌映射对种群精英化,提高初始种群的质量,加快算法的收敛速率并提高跳出局部最优值的能力。对于经典麻雀... 针对麻雀搜索算法容易陷入局部最优、迭代后期种群多样性单一等缺点,提出一种多策略结合的麻雀搜索算法。首先利用低差异序列、混沌映射对种群精英化,提高初始种群的质量,加快算法的收敛速率并提高跳出局部最优值的能力。对于经典麻雀搜索算法探索者探索能力不足的问题,利用种群之间的距离平衡搜索的精度和广度,引入d维超球面均匀分布的随机单位向量,提高种群的游走性;引入精英化思想对最优点实行保留,提高收敛速度和精度;引入遗传算法的轮盘赌思想改进跟随者的跟随策略。此外,利用改进高斯变异和改进逐维反向学习在最优解的位置进行扰动和精确搜索,以提高算法性能。与9种算法在24个基准测试函数、CEC2017测试函数的仿真对比实验、经典压力容器设计问题的实际工程应用以及Wilcoxon秩和检验结果表明,多策略改进的麻雀搜索算法有更好的寻优能力。 展开更多
关键词 麻雀搜索算法 低差异序列 高斯变异 逐维反向学习策略 函数优化
在线阅读 下载PDF
基于混合策略改进的海马优化器及其应用
8
作者 康培培 薛贵军 谭全伟 《电子测量技术》 北大核心 2024年第23期93-103,共11页
本文针对海马优化算法收敛精度低、全局搜索和局部开发不平衡、易陷入局部最优解等问题,提出了一种基于混合策略改进的海马优化器,记作ISHO。首先,融合灰狼优化算法的搜索特点改进海马优化算法的运动行为,使其能够在搜索空间内更有效地... 本文针对海马优化算法收敛精度低、全局搜索和局部开发不平衡、易陷入局部最优解等问题,提出了一种基于混合策略改进的海马优化器,记作ISHO。首先,融合灰狼优化算法的搜索特点改进海马优化算法的运动行为,使其能够在搜索空间内更有效地进行全局搜索和局部开发;然后,结合精英反向学习策略细化搜索过程,从而提高收敛精度;最后对海马优化器捕食阶段的参数进行调整,使其具有更强的自适应性避免算法过早的陷入局部最优解。将ISHO与其他6种智能优化算法在8种测试函数上进行比较,实验表明该算法相较于其他算法有更好的收敛速度、收敛精度和稳定性。将改进的海马优化算法应用到解决工程约束问题上,进一步证明改进算法的实用性。 展开更多
关键词 海马优化算法 灰狼优化算法 精英反向学习策略 参数调整
在线阅读 下载PDF
基于改进麻雀搜索算法的机械臂多目标轨迹优化方法
9
作者 李玲 侯玉龙 +2 位作者 李瑶 罗丹 解妙霞 《工程设计学报》 北大核心 2025年第5期664-674,共11页
针对传统机械臂在执行任务时存在工作效率低,以及易产生冲击和振动而造成机械疲劳损坏等问题,提出了一种基于改进麻雀搜索算法(sparrow search algorithm,SSA)的机械臂多目标轨迹优化方法。以六自由度AR4机械臂为研究对象,采用分段式3-... 针对传统机械臂在执行任务时存在工作效率低,以及易产生冲击和振动而造成机械疲劳损坏等问题,提出了一种基于改进麻雀搜索算法(sparrow search algorithm,SSA)的机械臂多目标轨迹优化方法。以六自由度AR4机械臂为研究对象,采用分段式3-5-3多项式插值法构建其运动学模型。然后,基于融合Tent-Logistic混沌映射、改良精英反向学习策略及柯西-高斯变异策略的新型改进SSA(newly improved SSA,NISSA),对机械臂各关节的运行时间和冲击进行多目标协同优化。最后,与其他优化算法进行对比实验,以验证NISSA的有效性。实验结果表明,应用NISSA优化后,机械臂的运行时间缩短了17.8%,运行中产生的冲击减小了12.9%。研究结果为机械臂的轨迹优化提供了高效的方法。 展开更多
关键词 机械臂 轨迹优化 麻雀搜索算法 Tent-Logistic混沌映射 精英反向学习策略
在线阅读 下载PDF
基于MDEPSO算法的无人机三维航迹规划
10
作者 肖鹏 于海霞 +1 位作者 黄龙 张司明 《兵工学报》 北大核心 2025年第7期214-226,共13页
针对经典粒子群算法在无人机三维航迹规划过程中全局搜索能力不足、易陷入局部最优等问题,研究提出一种多维增强粒子群优化算法。算法首先通过引入改善因子,在粒子寻优各个阶段实现动态调整惯性权重,提升种群适应性和克服局部最优能力;... 针对经典粒子群算法在无人机三维航迹规划过程中全局搜索能力不足、易陷入局部最优等问题,研究提出一种多维增强粒子群优化算法。算法首先通过引入改善因子,在粒子寻优各个阶段实现动态调整惯性权重,提升种群适应性和克服局部最优能力;其次依靠动态约束方程实现学习因子增强,促使粒子间信息共享更为高效,改善算法自学习能力;随后有序融合混沌初始化和精英反向学习进化等策略优势,重新规划粒子群进化流程,增强粒子在迭代过程中的均衡性和多样性,提升算法收敛精度。实验中通过测试函数横向对比和复杂三维任务场景纵向应用,多维增强粒子群优化算法在新的多维目标函数指标中相较于经典粒子群算法无人机航迹规划能力获得了提升,在5种比对算法中表现出较好的有效性和竞争力。 展开更多
关键词 无人机 航迹规划 粒子群算法 混沌 精英反向学习策略
在线阅读 下载PDF
基于IDBO-BP的喷墨印刷液滴质量预测的方法研究
11
作者 李莹 娄杨伟 +2 位作者 李海山 何自芬 刘梦莲 《包装工程》 北大核心 2025年第11期174-184,共11页
目的实现喷墨印刷液滴质量的精准预测和控制,提升喷墨印刷质量。方法提出一种改进的蜣螂优化器(Improved dung beetle optimizer,IDBO)来优化反向传播(Back propagation,BP)神经网络的模型,以精确预测喷墨印刷过程中的液滴质量。首先,... 目的实现喷墨印刷液滴质量的精准预测和控制,提升喷墨印刷质量。方法提出一种改进的蜣螂优化器(Improved dung beetle optimizer,IDBO)来优化反向传播(Back propagation,BP)神经网络的模型,以精确预测喷墨印刷过程中的液滴质量。首先,采用动态反向学习策略初始化种群,以增强种群的多样性和均匀性;其次,引入黄金正弦因子,提升算法的收敛速度和寻优精度,同时平衡局部和全局搜索能力。结果通过对9个基准测试函数的性能评估,IDBO算法展现出更优的收敛精度和更快的收敛速度。应用IDBO优化的BP神经网络进行液滴质量预测,IDBO-BP模型显著降低了均方根误差(Root mean square error,RMSE)和平均绝对误差(Mean bsolute error,MAE),最高分别降低了48%和38%,同时拟合优度(R^(2))提升了3%。结论结果证实IDBO-BP模型在预测喷墨印刷液滴质量方面的优越性能,并验证了其在喷墨印刷领域的应用潜力。 展开更多
关键词 改进蜣螂优化器 动态反向学习策略 黄金正弦因子 IDBO-BP模型 喷墨液滴质量预测
在线阅读 下载PDF
基于井下参数的SCNGO-SVM卡钻预警方法研究 被引量:2
12
作者 张涛 夏鹏 +2 位作者 李军 王彪 詹家豪 《石油机械》 北大核心 2025年第1期20-27,36,共9页
针对卡钻风险预测的问题,提出了一种融合正余弦和折射反向学习的北方苍鹰优化算法(SCNGO)和支持向量机(SVM)的卡钻预警模型。针对北方苍鹰优化算法(NGO)容易陷入局部最优以及初始解的分布具有随机性和非均匀性的特性,引入折射反向学习... 针对卡钻风险预测的问题,提出了一种融合正余弦和折射反向学习的北方苍鹰优化算法(SCNGO)和支持向量机(SVM)的卡钻预警模型。针对北方苍鹰优化算法(NGO)容易陷入局部最优以及初始解的分布具有随机性和非均匀性的特性,引入折射反向学习策略初始化北方苍鹰算法个体、正余弦策略替换原始苍鹰算法的勘察阶段的位置更新公式和正余弦策略的步长搜索因子进行改进,将SCNGO用于SVM寻参,并将模型SCNGO-SVM应用于卡钻预警。研究结果表明:SCNGO在收敛速度、寻优精度等方面明显优于NGO、WOA(鲸鱼优化算法)及SSA(麻雀优化算法);该卡钻预警模型对于卡钻的预测准确率高达97.33%,相较于WOA-SVM、NGO-SVM、SSA-SVM卡钻预警模型,在预测准确率和运算速度上均有较大的提升。该模型为卡钻的预测及其工程应用提供了理论指导。 展开更多
关键词 卡钻预警模型 北方苍鹰优化算法 性能测试 折射反向学习策略 正余弦策略
在线阅读 下载PDF
基于改进蝠鲼觅食优化算法的配电网储能选址定容研究 被引量:2
13
作者 李亚飞 俞易涵 +4 位作者 李展 邹启衡 黄颖 陈嘉栋 孟高军 《可再生能源》 北大核心 2025年第4期542-551,共10页
储能具有灵活性强、响应速度快等特点,可有效缓解新能源接入带来的负荷波动、电压失稳等问题。文章提出了一种基于改进蝠鲼觅食优化算法的双层配电网储能选址定容策略,以储能投资成本、日均电压波动和日均负荷波动最小为目标,建立双层... 储能具有灵活性强、响应速度快等特点,可有效缓解新能源接入带来的负荷波动、电压失稳等问题。文章提出了一种基于改进蝠鲼觅食优化算法的双层配电网储能选址定容策略,以储能投资成本、日均电压波动和日均负荷波动最小为目标,建立双层选址定容模型。引入采用精英反向学习策略和自适应翻滚因子改进的蝠鲼觅食优化算法求解模型,并以接入的新能源IEEE33节点配电网为例,对所提策略进行仿真验证。结果表明,所提选址定容优化方案可显著降低系统电压和负荷波动,有效减少系统投资成本。 展开更多
关键词 新能源 蝠鲼觅食优化算法 双层优化 精英反向学习策略
在线阅读 下载PDF
基于改进白鲸优化算法的三维DV-Hop定位算法 被引量:1
14
作者 陈悦 冯锋 《计算机科学》 北大核心 2025年第S1期798-806,共9页
为解决无线传感器网络中传统三维DV-Hop(Distance Vector Hop)算法在应对复杂环境时存在节点定位精度低、误差过大的问题,提出了一种基于改进白鲸优化算法(Improved Beluga Whale Optimization,IBWO)的三维定位算法(IBWO-DV-Hop)。首先... 为解决无线传感器网络中传统三维DV-Hop(Distance Vector Hop)算法在应对复杂环境时存在节点定位精度低、误差过大的问题,提出了一种基于改进白鲸优化算法(Improved Beluga Whale Optimization,IBWO)的三维定位算法(IBWO-DV-Hop)。首先,通过多通信半径并引入修正因子优化节点最小跳数,并利用跳距加权优化方法修正平均跳距,以降低通信半径不确定性和跳数误差对定位精度的影响。其次,引入IBWO代替最小二乘法估算未知节点的位置,所做改进包括在白鲸算法初始化阶段采用Sobol序列和反向学习结合的策略对初始种群实施改进,增加种群多样性。然后,在勘探阶段和开发阶段分别引入自适应t分布变异和自适应Levy飞行策略,增强算法的寻优能力。最后,在鲸落阶段引入透镜成像反向学习策略,提升算法的全局寻优能力。实验结果表明,与传统三维DV-hop算法以及其他同类算法相比,该算法具有更高的定位精度。 展开更多
关键词 无线传感器网络 三维DV-Hop算法 白鲸优化算法 多通信半径 跳距加权优化 自适应t分布变异 透镜成像反向学习策略
在线阅读 下载PDF
多策略融合鲸鱼算法与二维最大熵的图像分割 被引量:6
15
作者 徐武 王欣达 +1 位作者 高寒 张强 《河南科技大学学报(自然科学版)》 CAS 北大核心 2023年第3期33-37,45,I0003,共7页
传统的图像分割算法存在抗噪声差、迭代速度不高等缺陷,为了提高图像分割的质量,提出一种引入反向学习策略的鲸鱼优化算法(WOA)与二维最大熵结合的图像分割方法,并通过结合Sobol序列、自适应权重系数、收敛因子的非线性调整优化后的WOA... 传统的图像分割算法存在抗噪声差、迭代速度不高等缺陷,为了提高图像分割的质量,提出一种引入反向学习策略的鲸鱼优化算法(WOA)与二维最大熵结合的图像分割方法,并通过结合Sobol序列、自适应权重系数、收敛因子的非线性调整优化后的WOA算法,得到目标图像的最优阈值,并对其进行分割。通过与原始WOA算法在测试函数上的对比,表明改进算法具有较好的收敛性和较快的收敛速度。将改进算法实际运用到草坪背景下,分割后图片的峰值信噪比值相较于另外2种对比算法分别提高了5.2%、3.5%,在天空背景下分别提高了3.6%、2.2%,证明了改进后的算法可以提高分割的图片质量,体现了该算法的优越性。 展开更多
关键词 图像分割 WOA算法 二维最大熵 反向学习策略 自适应权重
在线阅读 下载PDF
多策略SMA-BP神经网络的空气质量指数预测 被引量:5
16
作者 文昌俊 陈洋洋 +1 位作者 何永豪 陈凡 《电子测量技术》 北大核心 2023年第22期78-86,共9页
针对BP神经网络预测精度不佳、预测结果不稳定的问题,提出改进黏菌算法(ISMA)优化BP神经网络的预测模型,引入Tent混沌映射克服初始种群分布不均的缺点,针对黏菌算法位置更新的随机性和后期容易陷入局部最优等问题引入领导者策略和莱维... 针对BP神经网络预测精度不佳、预测结果不稳定的问题,提出改进黏菌算法(ISMA)优化BP神经网络的预测模型,引入Tent混沌映射克服初始种群分布不均的缺点,针对黏菌算法位置更新的随机性和后期容易陷入局部最优等问题引入领导者策略和莱维飞行策略,利用自适应反向学习策略扩大搜索空间并用23组基准函数加以测试。随后利用ISMA算法优化BP网络模型的初始权值和阈值,构建ISMA-BP空气质量指数预测模型,最后将收集到的779组空气质量指数数据代入预测模型中进行测试分析,实验结果表明,与BP神经网络模型、GWO-BP、SMA-BP模型相比,ISMA-BP模型对AQI的预测具有更高的精度,其预测的均方误差为3.8402,平均绝对误差分别为1.5078。 展开更多
关键词 黏菌算法 Tent混沌映射 反向学习策略 BP神经网络 灰色关联 度空气质量预测
在线阅读 下载PDF
基于改进粒子群算法的焊接机械臂轨迹规划方法
17
作者 景会成 张冰珂 +2 位作者 张靖轩 郭明亮 孙晋超 《现代制造工程》 北大核心 2025年第6期67-72,128,共7页
为了提高焊接机械臂在不同障碍物环境中的工作效率,提出了一种多策略改进粒子群算法的避障轨迹规划方法。利用6次多项式函数对机械臂前3个关节进行插值规划,获取运动轨迹。动态调整粒子群优化算法的惯性权重和学习因子,平衡算法的全局... 为了提高焊接机械臂在不同障碍物环境中的工作效率,提出了一种多策略改进粒子群算法的避障轨迹规划方法。利用6次多项式函数对机械臂前3个关节进行插值规划,获取运动轨迹。动态调整粒子群优化算法的惯性权重和学习因子,平衡算法的全局和局部搜索能力;引入动态透镜成像反向学习策略,并融合重启策略和贪婪算法,提升算法跳出局部最优的能力。以IRB120型机械臂为研究对象,通过MATLAB软件进行仿真。仿真结果表明,改进的粒子群算法在收敛速度和寻优精度上有显著的提升,运动轨迹平滑无突变。 展开更多
关键词 机械臂 粒子群优化算法 反向学习策略 避障轨迹规划
在线阅读 下载PDF
融合学习机制的多混沌麻雀搜索算法 被引量:6
18
作者 李光阳 潘家文 +3 位作者 钱谦 殷继彬 伏云发 冯勇 《计算机科学与探索》 CSCD 北大核心 2023年第5期1057-1074,共18页
针对麻雀搜索算法(SSA)易受初始解的影响陷入局部极值、迭代后期收敛速度慢等缺陷,提出了一种融合学习机制的多混沌麻雀搜索算法(MMCSSA)。首先,引入重心反向学习策略(COBL)生成精英种群增强对多源优质搜索区域的勘探能力,提升算法的局... 针对麻雀搜索算法(SSA)易受初始解的影响陷入局部极值、迭代后期收敛速度慢等缺陷,提出了一种融合学习机制的多混沌麻雀搜索算法(MMCSSA)。首先,引入重心反向学习策略(COBL)生成精英种群增强对多源优质搜索区域的勘探能力,提升算法的局部极值逃逸能力和收敛性能。其次,提出一种动态调整的黄金正弦领导策略并嵌入SSA中以改善发现者的搜索方式,增强算法的全局搜索能力。然后,提出一种基于学习机制的多混沌映射策略,该机制利用多混沌多扰动模式的特性,通过动态调用不同混沌映射赋予算法不同类别的扰动特征。混沌扰动失败时,引入高斯变异策略对当前解进行深度开发,两种策略协同作用,相互促进,极大增强了算法逃逸局部最优的能力。最后,将所提算法应用于12个不同特征的基准函数进行实验,结果表明与其他算法相比,MMCSSA在收敛精度、寻优速度和鲁棒性方面有更好的表现。 展开更多
关键词 麻雀搜索算法(SSA) 黄金正弦算法 高斯变异 多混沌学习机制 重心反向学习策略(COBL)
在线阅读 下载PDF
基于改进灰狼算法的自动导航小车控制策略 被引量:7
19
作者 石雅凯 陈晓静 荣峰 《科学技术与工程》 北大核心 2023年第23期9965-9972,共8页
针对灰狼算法(grey wolf optimizer,GWO)易陷入局部最优、后期收敛速度慢等问题,通过引入改进Tent混沌映射反向学习策略和非线性收敛因子,并加入差分进化的变异、交叉、选择操作,提出一种改进的差分灰狼优化算法(improved differential ... 针对灰狼算法(grey wolf optimizer,GWO)易陷入局部最优、后期收敛速度慢等问题,通过引入改进Tent混沌映射反向学习策略和非线性收敛因子,并加入差分进化的变异、交叉、选择操作,提出一种改进的差分灰狼优化算法(improved differential evolution grey wolf optimizer,IDE-GWO)。将改进算法应用于优化自动导航小车(automated guided vehicle,AGV)的比例积分微分(proportion integration differentiation,PID)控制参数,并与其他几种算法进行对比。Simulink仿真实验结果表明:该改进算法优化PID参数的控制效果明显优于其他智能优化算法,能够有效地提升AGV轨迹跟踪性能,使得AGV实际轨迹能较好拟合目标轨迹。 展开更多
关键词 Tent混沌映射反向学习策略 差分进化灰狼优化 非线性收敛因子 PID控制
在线阅读 下载PDF
基于反向变异麻雀搜索算法的微电网优化调度 被引量:29
20
作者 宋扬 石勇 +1 位作者 刘宝泉 康家玉 《电力工程技术》 北大核心 2022年第2期163-170,共8页
微电网系统包括多种分布式电源,为了降低微电网发电成本,应用优化算法对微电网进行调度很有必要。传统优化算法在微电网调度求解时容易陷入局部最优,导致收敛速度下降,因此文中在麻雀搜索算法(SSA)的基础上,提出一种反向变异麻雀搜索算... 微电网系统包括多种分布式电源,为了降低微电网发电成本,应用优化算法对微电网进行调度很有必要。传统优化算法在微电网调度求解时容易陷入局部最优,导致收敛速度下降,因此文中在麻雀搜索算法(SSA)的基础上,提出一种反向变异麻雀搜索算法(RMSSA)。首先,利用反向学习策略和自适应t分布变异扩大SSA的寻优范围,提高种群多样性,改善SSA的搜索能力,然后建立以综合运行成本最低为目标的微电网优化调度模型,最后设定功率平衡、充放电速率、爬坡速率等约束条件,利用RMSSA对微电网优化调度模型进行求解。对比仿真结果表明此算法具有良好的全局搜索能力,其在收敛速度、寻优精度和稳定性上优于原SSA、灰狼算法、蝙蝠算法,微电网能获得更佳的综合效益。 展开更多
关键词 反向学习策略 自适应t分布变异 麻雀搜索算法(RMSSA) 微电网 优化调度 综合运行成本
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部