期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
基于拟反向学习的自适应QPSO算法及其在工程中的应用
1
作者 何光 《河南师范大学学报(自然科学版)》 北大核心 2025年第5期81-89,I0013,共10页
为改善量子粒子群优化(quantum-behaved particle swarm optimization algorithm,QPSO)算法在求解复杂的多模问题时表现出的收敛精度差和易于陷入局部最优的问题,提出了一种基于拟反向学习的自适应QPSO算法.首先,借鉴拟反向学习的思路,... 为改善量子粒子群优化(quantum-behaved particle swarm optimization algorithm,QPSO)算法在求解复杂的多模问题时表现出的收敛精度差和易于陷入局部最优的问题,提出了一种基于拟反向学习的自适应QPSO算法.首先,借鉴拟反向学习的思路,对粒子初始位置进行优化调整,增加算法搜索效率,加快收敛速度;其次,在粒子运动幅度的设置中考虑了种群进化程度和粒子聚集程度,构造了具有自适应特点的收缩-扩张因子,用于增强算法的局部挖掘和全局搜索能力;然后,将混沌映射的方法引入到越界粒子的处理上,有助于算法逃离局部最优.接着,基于14个测试函数将改进算法与8种智能优化算法进行对比分析.最后借助2个具体的工程设计问题进一步检验改进算法在实际应用中的效果.实验结果表明改进算法无论在基准测试中还是在工程应用上,其搜索能力更强,整体性能表现更为均衡. 展开更多
关键词 量子粒子优化算法 反向学习 收缩-扩张因子 混沌映射 工程应用
在线阅读 下载PDF
基于Tent映射的自适应混沌嵌入式粒子群算法 被引量:14
2
作者 魏玉琴 戴永寿 +2 位作者 张亚南 陈健 丁进杰 《计算机工程与应用》 CSCD 2013年第10期45-49,共5页
为避免粒子群算法后期出现早熟收敛,提出一种基于Tent映射的自适应混沌嵌入式粒子群算法。将混沌变量嵌入到标准粒子群算法中,且对参数进行自适应调整。算法采用Tent映射生成的混沌序列来取代基本粒子群算法中的随机数,充分利用了混沌... 为避免粒子群算法后期出现早熟收敛,提出一种基于Tent映射的自适应混沌嵌入式粒子群算法。将混沌变量嵌入到标准粒子群算法中,且对参数进行自适应调整。算法采用Tent映射生成的混沌序列来取代基本粒子群算法中的随机数,充分利用了混沌运动的随机性、遍历性和规律性;惯性权重和学习因子采用非线性的自适应调整策略;建立平均粒距与适应度方差相结合的早熟收敛判断机制,并且以混沌搜索的方式来跳出局部最优。测试函数仿真结果表明,该算法具有良好的全局搜索能力,寻优精度较高,鲁棒性好。 展开更多
关键词 嵌入式粒子算法 混沌 自适应 帐篷映射 平均粒径 适应度方差
在线阅读 下载PDF
自适应精英反向学习的粒子群优化算法 被引量:7
3
作者 赵嘉 吕莉 孙辉 《小型微型计算机系统》 CSCD 北大核心 2015年第9期2166-2171,共6页
针对标准粒子群优化算法易陷入局部最优、进化后期收敛速度慢和收敛精度低等缺点,提出一种自适应精英反向学习的粒子群优化算法.在迭代过程中,算法判断种群是否陷入局部最优,若陷入局部最优,则随机选择精英粒子的部分维度进行反向学习,... 针对标准粒子群优化算法易陷入局部最优、进化后期收敛速度慢和收敛精度低等缺点,提出一种自适应精英反向学习的粒子群优化算法.在迭代过程中,算法判断种群是否陷入局部最优,若陷入局部最优,则随机选择精英粒子的部分维度进行反向学习,且学习的维度空间大小随着进化呈线性递减,以此增强算法在进化前期的探索能力和后期的开发能力.在固定评估次数的情况下,实验对10个常用经典基准测试函数在30维上进行仿真测试,实验结果表明:改进算法在收敛速度、寻优精度和逃离局部最优的能力上明显优于一些知名的改进粒子群优化算法. 展开更多
关键词 粒子优化算法 自适应 精英粒子 反向学习
在线阅读 下载PDF
具有反向学习和自适应逃逸功能的粒子群优化算法 被引量:7
4
作者 吕莉 赵嘉 孙辉 《计算机应用》 CSCD 北大核心 2015年第5期1336-1341,共6页
为克服粒子群优化算法进化后期收敛速度慢、易陷入局部最优等缺点,提出一种具有反向学习和自适应逃逸功能的粒子群优化算法。通过设定的阈值,算法将种群进化状态划分为正常状态和"早熟"状态:若算法处于正常的进化状态,采用标... 为克服粒子群优化算法进化后期收敛速度慢、易陷入局部最优等缺点,提出一种具有反向学习和自适应逃逸功能的粒子群优化算法。通过设定的阈值,算法将种群进化状态划分为正常状态和"早熟"状态:若算法处于正常的进化状态,采用标准粒子群优化算法的进化模式;当粒子陷入"早熟"状态,运用反向学习和自适应逃逸功能,对个体最优位置进行反向学习,产生粒子的反向解,增加粒子的反向学习能力,增强算法逃离局部最优的能力,提高算法寻优率。在固定评估次数的情况下,对8个基准测试函数进行仿真,实验结果表明:所提算法在收敛速度、寻优精度和逃离局部最优的能力上明显优于多种经典粒子群优化算法,如充分联系的粒子群优化算法(FIPS)、基于时变加速度系数的自组织分层粒子群优化算法(HPSO-TVAC)、综合学习的粒子群优化算法(CLPSO)、自适应粒子群优化算法(APSO)、双中心粒子群优化算法(DCPSO)和具有快速收敛和自适应逃逸功能的粒子群优化算法(FAPSO)等。 展开更多
关键词 粒子优化算法 反向学习 算法状态 自适应逃逸
在线阅读 下载PDF
自适应学习因子的混沌二进制粒子群优化算法 被引量:13
5
作者 邱飞岳 王京京 《浙江工业大学学报》 CAS 北大核心 2020年第4期411-417,共7页
针对二进制粒子群优化算法存在求解精度低的问题,提出一种自适应学习因子的混沌二进制粒子群优化算法(SABPSO)。首先,SABPSO算法采用混沌策略初始化粒子种群;其次,根据适应度值以及当前粒子与最优粒子间距离设计粒子成长因子,反映种群... 针对二进制粒子群优化算法存在求解精度低的问题,提出一种自适应学习因子的混沌二进制粒子群优化算法(SABPSO)。首先,SABPSO算法采用混沌策略初始化粒子种群;其次,根据适应度值以及当前粒子与最优粒子间距离设计粒子成长因子,反映种群的进化状态;再次,通过成长因子和迭代次数设计自适应学习因子更新机制;最后,实验结果表明:在4个经典测试函数上SABPSO算法具有更有效的收敛性能。 展开更多
关键词 混沌二进制 粒子优化算法 成长因子 自适应学习因子
在线阅读 下载PDF
应用多策略改进量子粒子群算法的直流电与Rayleigh波联合反演
6
作者 朱春光 管泓清 +3 位作者 秦天 张富翔 王强 高远 《石油地球物理勘探》 北大核心 2025年第1期137-151,共15页
针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)... 针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)的量子行为粒子群(Quantum-behaved Particle Swarm Optimization,QPSO)算法(简称为COBL-CS-QPSO算法)应用于二者的一维联合反演。通过联合反演可以从电阻率数据中提取层厚信息,弥补单独Rayleigh波反演难以精确解析层厚的问题;同时多策略算法的引入使解在搜索过程中不易陷入局部最优,并加强了不确定环境下的随机搜索效率。理论模型实验考虑了无噪声与有噪声以及已知模型层数与未知模型层数的多种情况,并使模型反演在宽泛的搜索区间内进行,最终取得了良好的反演效果。随后将该联合反演算法应用于实际数据,结果表明基于COBL-CS-QPSO算法的直流电与Rayleigh波联合反演在无钻孔信息或未知地下详细分层的条件下,能够获得相比于单独方法更为准确的结果。同时与自适应粒子群(APSO)算法的对比也体现了改进算法的反演优势。 展开更多
关键词 Rayleigh 波法 直流电法 联合反演 量子行为粒子算法 重心反向学习 混沌搜索 无限折叠的迭代混 映射 浅地表
在线阅读 下载PDF
引入精英反向学习和柯西变异的混沌蜉蝣算法 被引量:10
7
作者 张少丰 李书琴 《计算机工程与设计》 北大核心 2024年第1期187-196,共10页
为提高蜉蝣算法的收敛速度,提升算法寻优能力,提出一种引入精英反向学习和柯西变异的混沌蜉蝣算法。利用Circle混沌映射序列优化初始种群使种群分布更加均匀,提高种群多样性。在蜉蝣更新阶段,对蜉蝣中的精英个体进行反向学习策略,防止... 为提高蜉蝣算法的收敛速度,提升算法寻优能力,提出一种引入精英反向学习和柯西变异的混沌蜉蝣算法。利用Circle混沌映射序列优化初始种群使种群分布更加均匀,提高种群多样性。在蜉蝣更新阶段,对蜉蝣中的精英个体进行反向学习策略,防止算法陷入局部最优,提高算法收敛速度。为保证种群进化方向和扩大寻优范围,将自适应概率阈值和柯西变异的扰动机制相结合,对劣势蜉蝣个体附近生成更大的扰动。通过8个基准测试函数实验对比和Wilcoxon秩和检验,实验结果表明,混沌蜉蝣算法在收敛速度、求解精度以及稳定性等方面有较大提高。 展开更多
关键词 蜉蝣算法 混沌映射 精英反向学习 柯西变异 扰动机制 自适应 劣势蜉蝣
在线阅读 下载PDF
基于复合混沌自适应麻雀搜索算法的路径规划
8
作者 柯雨彤 汪洲 +2 位作者 王伟森 邓贤发 梁金胜 《组合机床与自动化加工技术》 北大核心 2025年第6期36-42,48,共8页
为解决麻雀搜索算法在全局搜索与局部开发不协调及易陷入局部最优的问题,提出了一种多策略集成的复合混沌自适应麻雀搜索算法。通过融合混沌映射和折射反向学习策略进行种群初始化,结合周期性变化因子优化位置更新,并动态调整探索者与... 为解决麻雀搜索算法在全局搜索与局部开发不协调及易陷入局部最优的问题,提出了一种多策略集成的复合混沌自适应麻雀搜索算法。通过融合混沌映射和折射反向学习策略进行种群初始化,结合周期性变化因子优化位置更新,并动态调整探索者与跟随者的比例,增强了算法的全局搜索能力并提高了收敛精度。随后选取7个标准测试函数与其他5种群智能优化算法从仿真实验角度证明了改进算法的有效性。并将其应用于移动机器人的路径规划,结果显示ICCA-SSA不仅能准确捕捉最优路径,还能保持路径长度的一致性和稳定性,生成的路径在平滑性、长度和转弯频率上均优于其他算法,展现出卓越的障碍物规避能力,能提供高效且可靠的解决方案。 展开更多
关键词 麻雀搜索算法 路径规划 混沌映射 反向学习 自适应调整策略
在线阅读 下载PDF
基于自适应Tent混沌搜索的粒子群优化算法 被引量:14
9
作者 黄美灵 赵之杰 +4 位作者 浦立娜 吴非 赵美玲 陈浩 陈明哲 《计算机应用》 CSCD 北大核心 2011年第2期485-489,共5页
为解决粒子群优化算法易于陷入局部最优问题,提出基于自适应Tent混沌搜索的粒子群优化算法。应用Tent映射初始化均匀分布的粒群,并以当前整个粒子群迄今为止搜索到的最优位置为基础产生Tent混沌序列,混沌序列的搜索范围采用自适应调整... 为解决粒子群优化算法易于陷入局部最优问题,提出基于自适应Tent混沌搜索的粒子群优化算法。应用Tent映射初始化均匀分布的粒群,并以当前整个粒子群迄今为止搜索到的最优位置为基础产生Tent混沌序列,混沌序列的搜索范围采用自适应调整方法。该方法可以有效避免计算的盲目性,还能够快速搜寻到最优解。实验表明该算法在多个标准测试函数下都超越了同类改进算法。 展开更多
关键词 粒子优化算法 TENT映射 自适应 混沌搜索
在线阅读 下载PDF
基于Tent映射的混沌粒子群优化算法及其应用 被引量:11
10
作者 张学良 温淑花 +3 位作者 李海楠 卢青波 武美先 王晓丽 《中国机械工程》 EI CAS CSCD 北大核心 2008年第17期2108-2112,共5页
针对基本粒子群优化算法在迭代后期易陷入局部最优而出现早熟收敛的现象,基于混沌搜索的全局遍历性、随机性和规律性的特点,以粒子群群体适应度方差作为粒子群优化算法早熟收敛的判据,将Tent映射作为混沌搜索引入到基本粒子群算法中,对... 针对基本粒子群优化算法在迭代后期易陷入局部最优而出现早熟收敛的现象,基于混沌搜索的全局遍历性、随机性和规律性的特点,以粒子群群体适应度方差作为粒子群优化算法早熟收敛的判据,将Tent映射作为混沌搜索引入到基本粒子群算法中,对以一定概率随机选择的粒子群中的部分粒子实施混沌搜索,利用混沌特性提高种群的多样性和粒子搜索的遍历性,从而使粒子获得持续搜索的能力,提高了粒子群优化算法的全局搜索能力和抗早熟收敛性能。几个典型测试函数的仿真实验和应用实例均证明了该算法的可行性。 展开更多
关键词 TENT映射 混沌粒子优化算法 适应度方差 多样性
在线阅读 下载PDF
融入重心反向学习和单纯形搜索的粒子群优化算法 被引量:6
11
作者 张文宁 周清雷 +1 位作者 焦重阳 梅亮 《计算机工程与科学》 CSCD 北大核心 2023年第9期1629-1638,共10页
针对粒子群优化PSO算法后期种群多样性差和易陷入局部最优解等问题,提出具备重心反向学习和单纯形搜索行为的粒子群优化COLS-PSO算法。初始时,基于混沌策略构造出搜索空间。进化过程中,基于Spearman系数选择需要进行重心反向学习的粒子... 针对粒子群优化PSO算法后期种群多样性差和易陷入局部最优解等问题,提出具备重心反向学习和单纯形搜索行为的粒子群优化COLS-PSO算法。初始时,基于混沌策略构造出搜索空间。进化过程中,基于Spearman系数选择需要进行重心反向学习的粒子,以帮助算法逃离局部极值区域。进一步引入局部搜索能力较强的单纯形搜索方法增强对最优粒子邻近区域的开发,以提高搜索精度。实验先在若干标准测试函数上进行,之后将COLS-PSO算法应用于软件测试数据生成问题。实验结果表明,COLS-PSO算法在求解精度、收敛速度和有效性方面表现较好,能够有效平衡种群多样性和算法收敛性的矛盾。 展开更多
关键词 粒子优化算法 混沌策略 重心反向学习 单纯形搜索 测试数据生成
在线阅读 下载PDF
基于自适应t分布的改进麻雀搜索算法及其应用 被引量:1
12
作者 赵小强 顾鹏 《兰州理工大学学报》 北大核心 2025年第2期78-87,共10页
针对原始麻雀搜索算法全局搜索能力差、局部开发能力弱、易陷入局部最优等问题,提出一种基于自适应t分布的麻雀搜索算法(ATSSA).首先,通过Tent混沌映射初始化种群,增加初始种群的多样性;其次,利用自适应t分布变异算子对个体位置进行扰动... 针对原始麻雀搜索算法全局搜索能力差、局部开发能力弱、易陷入局部最优等问题,提出一种基于自适应t分布的麻雀搜索算法(ATSSA).首先,通过Tent混沌映射初始化种群,增加初始种群的多样性;其次,利用自适应t分布变异算子对个体位置进行扰动,提高算法的全局搜索能力,同时结合动态选择概率来调节引入的t分布变异算子,平衡算法的全局搜索能力;最后,融合精英反向学习策略,在产生最优解的位置进行扰动,产生新解,促使算法跳出局部最优.仿真实验利用10个基准测试函数进行测试,结果表明ATSSA相较于SSA具有更好的寻优能力.将改进后的算法与深度极限学习机构建预测模型,选用辛烷值数据集进行实验,模型预测精度从87.31%提高到99.32%,验证了改进后的算法具有良好的工程应用前景. 展开更多
关键词 麻雀搜索算法 Tent混沌映射 自适应t分布 动态选择策略 精英反向学习
在线阅读 下载PDF
基于精英知识引导的多种群协作粒子群优化算法 被引量:2
13
作者 张伟 张润雨 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第6期116-128,共13页
目的为了解决粒子群优化(particle swarm optimization,PSO)算法易早熟收敛、后期收敛速度慢、精度低等问题,方法提出一种基于精英知识引导的多种群协作粒子群优化算法(multi-group cooperation particle swarm optimization algorithm,... 目的为了解决粒子群优化(particle swarm optimization,PSO)算法易早熟收敛、后期收敛速度慢、精度低等问题,方法提出一种基于精英知识引导的多种群协作粒子群优化算法(multi-group cooperation particle swarm optimization algorithm,MGCPSO)。首先,采用基于幂函数约束的logistic映射得到分布均匀的初始种群,加快寻优速度并提高找到最优解的概率;其次,在算法执行阶段动态划分多种群,并利用精英知识引导劣势粒子飞行,实现粒子间的信息共享和协同进化,降低粒子在解空间探索的盲目性;最后,综合融入精英知识的反向学习和极值扰动策略对粒子施加变异,帮助粒子扩大搜索区域并加强对最优邻域的精细探索。结果为验证MGCPSO的性能,在30维和100维的基准测试函数上进行了仿真实验研究,结果表明,相比于其他几种改进算法,提出的算法在收敛速度和收敛精度上均有良好表现。结论多种群协作粒子群优化可以有效避免算法早熟收敛和陷入局部最优,同时可以提高算法的全局搜索能力和局部开发能力。 展开更多
关键词 粒子优化算法 LOGISTIC映射 多种 精英知识 反向学习 极值扰动
在线阅读 下载PDF
基于改进灰狼算法和自适应分裂KD-Tree的点云配准方法 被引量:2
14
作者 杜沅昊 耿秀丽 +1 位作者 徐诚智 刘银华 《系统仿真学报》 北大核心 2025年第2期424-435,共12页
针对传统GWO存在搜索效率不足、易陷入局部最优等问题,提出了一种基于改进GWO和迭代最近点(ICP)的工业复杂零件点云配准方法。针对GWO随机初始化导致种群分布不均匀的问题,采用混沌映射对灰狼种群进行初始化,使种群更加均匀地分布在搜... 针对传统GWO存在搜索效率不足、易陷入局部最优等问题,提出了一种基于改进GWO和迭代最近点(ICP)的工业复杂零件点云配准方法。针对GWO随机初始化导致种群分布不均匀的问题,采用混沌映射对灰狼种群进行初始化,使种群更加均匀地分布在搜索空间内;引入一种非线性控制参数策略,平衡灰狼算法的局部搜索和全局搜索能力;融合精英反向学习,提高算法后期解的质量;利用ICP算法进行精配准。设计一种自适应分裂维度的方法,动态选择分裂维度,提高点云数据质量。仿真结果表明:IGWO相较于3种对比算法的RMSE平均提高了80.31%、73.99%、47.7%。 展开更多
关键词 改进灰狼算法 混沌映射 非线性参数 精英反向学习 点云配准 自适应分裂维度
在线阅读 下载PDF
多策略自适应蜣螂优化算法求解FJSP问题
15
作者 余莹 谭代伦 +1 位作者 冯世强 王彬溶 《制造技术与机床》 北大核心 2025年第7期225-232,共8页
针对以最大完工时间最小化为目标的柔性作业车间调度问题(flexible job-shop scheduling problem, FJSP),提出一种多策略自适应蜣螂优化算法(multi-strategy and adaptive dung beetle optimizer, MSA-DBO)。首先,利用Logistic-tent混... 针对以最大完工时间最小化为目标的柔性作业车间调度问题(flexible job-shop scheduling problem, FJSP),提出一种多策略自适应蜣螂优化算法(multi-strategy and adaptive dung beetle optimizer, MSA-DBO)。首先,利用Logistic-tent混沌映射和G-L-R策略改进种群初始化,使种群分布更均匀,提高初始解质量;其次,在计算蜣螂个体适应度后采用锦标赛策略选择个体构成优选种群,以加快收敛速度;再次,采用黄金正弦策略改进推球蜣螂遇到障碍时的位置更新公式,以避免陷入局部最优;最后,在蜣螂位置更新后增加精英随机反向学习策略和基于关键路径的自适应重调度策略,以增强种群中蜣螂个体之间的交流和全局寻优能力。选取Brandimarte算例和实际案例进行仿真实验和对比,结果表明MSA-DBO算法的改进策略有效,求解精度和算法性能得到明显增强。 展开更多
关键词 柔性作业车间调度问题 蜣螂优化算法 Logistic-tent混沌映射 G-L-R策略 黄金正弦策略 精英随机反向学习 自适应重调度
在线阅读 下载PDF
ACCQPSO:一种改进的量子粒子群优化算法及其应用 被引量:1
16
作者 孙隽丰 李成海 宋亚飞 《信息网络安全》 CSCD 北大核心 2024年第4期574-586,共13页
针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始... 针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始种群的随机性与遍历性,提高算法寻优能力;然后,通过纵向交叉操作进行种群中个体的信息交换,并引入自适应交叉概率公式,增加种群多样性,提高算法的寻优精度;最后,在实验中,一方面,选取8个函数在高低两个维度进行验证,同时进行Wilcoxon秩和检验分析以及消融实验,验证该算法相较其他算法的有效性;另一方面,通过算法优化BP神经网络应用到网络安全态势预测任务中,实验结果表明该算法收敛速度相较于对比算法有大幅度提升。 展开更多
关键词 量子粒子优化算法 混沌映射 交叉算子 自适应调整策略 BP神经网络
在线阅读 下载PDF
基于自适应进化模型的粒子群优化算法 被引量:2
17
作者 王雪瑞 宋全有 《计算机工程与设计》 CSCD 北大核心 2014年第8期2901-2906,共6页
针对标准粒子群算法在处理复杂优化问题时易出现收敛速度慢和陷入局部最优的问题,提出了一种自适应进化模型的粒子群优化算法。通过设定的阈值limit将种群进化状态划分为正常状态和"早熟"状态,当种群全局最优位置信息连续超过... 针对标准粒子群算法在处理复杂优化问题时易出现收敛速度慢和陷入局部最优的问题,提出了一种自适应进化模型的粒子群优化算法。通过设定的阈值limit将种群进化状态划分为正常状态和"早熟"状态,当种群全局最优位置信息连续超过limit次没有更新时,认为算法处于"早熟"状态,此时对种群的个体最优位置进行反向学习,帮助算法逃离局部最优,并采用新的进化模型;否则视为正常进化状态,并采用标准粒子群进化模型。8个基准测试函数的仿真结果表明,该算法与一些其它改进粒子群算法如FIPS、CLPSO、MPSO-SFLA算法相比,在全局寻优能力、收敛速度和收敛精度方面都具有明显的优势。 展开更多
关键词 粒子优化算法 自适应进化 反向学习 快速收敛 局部最优
在线阅读 下载PDF
混合多项自适应权重的混沌麻雀搜索算法 被引量:12
18
作者 杜云 周志奇 +2 位作者 贾科进 丁力 卢孟杨林 《计算机工程与应用》 CSCD 北大核心 2024年第7期70-83,共14页
麻雀搜索算法具有原理简单、搜索能力强、快速寻优等优点,但是存在全局搜索不足、易陷入局部最优等缺点,针对其缺点提出了混合多项自适应权重的混沌麻雀搜索算法。增加改进Circle混沌映射提高种群多样性;在发现者引入自适应权重策略,提... 麻雀搜索算法具有原理简单、搜索能力强、快速寻优等优点,但是存在全局搜索不足、易陷入局部最优等缺点,针对其缺点提出了混合多项自适应权重的混沌麻雀搜索算法。增加改进Circle混沌映射提高种群多样性;在发现者引入自适应权重策略,提高发现者的全局搜索能力和搜索范围;在加入者引入改进鲸鱼优化算法的气泡网捕食策略,提高算法的局部搜索性能和跳出局部最优的能力;结合反向学习策略机制,对所有的个体进行最优选择,使每次迭代后的个体质量得到提升,以提高算法的寻优效率和寻优精度。将混合多项自适应权重的混沌麻雀搜索算法与4种经典基本算法和9种改进的麻雀搜索算法在12种测试函数和CEC2022测试函数上进行对比,改进算法有更好的寻优性能和收敛速度。 展开更多
关键词 麻雀搜索算法 Circle混沌映射 自适应权重 鲸鱼优化算法 反向学习
在线阅读 下载PDF
基于多策略改进灰狼算法的无人机路径规划 被引量:4
19
作者 宋宇 高岗 +1 位作者 梁超 徐军生 《电子测量技术》 北大核心 2025年第1期84-91,共8页
针对传统的灰狼算法在三维路径规划中容易陷入局部最优等问题,本文提出了一种改进的灰狼算法。首先,对三维威胁区域进行环境建模,对约束条件规定无人机飞行的总成本函数;其次,在灰狼种群初始化中加入了混沌序列和准反向学习策略,增加了... 针对传统的灰狼算法在三维路径规划中容易陷入局部最优等问题,本文提出了一种改进的灰狼算法。首先,对三维威胁区域进行环境建模,对约束条件规定无人机飞行的总成本函数;其次,在灰狼种群初始化中加入了混沌序列和准反向学习策略,增加了群种多样性以及未知领域的搜索范围,通过对自适应权重因子的改进来更新个体位置,从而加快收敛速度;最后,为了避免陷入局部最优,引入了粒子群算法从而平衡全局开发与局部收敛。通过实验结果表明,相较于另外3种典型路径规划算法,改进灰狼算法可以寻找出一条安全可行的路径,并且有着较稳定的寻优能力。 展开更多
关键词 无人机 三维路径规划 混沌序列 反向学习 灰狼算法 粒子算法
在线阅读 下载PDF
基于改进粒子群算法的PIDNN控制器在VSC-HVDC中的应用 被引量:17
20
作者 李爽 王志新 王国强 《中国电机工程学报》 EI CSCD 北大核心 2013年第3期14-21,120,共8页
针对海上风电场并网柔性直流输电(voltage sourceconverter based high-voltage direct-current,VSC-HVDC)系统比例–积分–微分神经网络(PID neural network,PIDNN)控制器参数寻优过程中存在的问题,提出一种基于限制竞争小生境混沌变... 针对海上风电场并网柔性直流输电(voltage sourceconverter based high-voltage direct-current,VSC-HVDC)系统比例–积分–微分神经网络(PID neural network,PIDNN)控制器参数寻优过程中存在的问题,提出一种基于限制竞争小生境混沌变异的改进粒子群算法(improved niche chaoticparticle swarm optimization,INCPSO)。该算法中小生境技术引入限制竞争淘汰机制,使其具有良好的全局寻优能力(探索),配合改进的帐篷映射混沌变异算法,可获得局部精细遍历性能(发现)。在解决粒子群算法早熟收敛和搜索精度低等问题的同时,最大程度地平衡了粒子群算法在解空间内的探索和发现能力。给出了VSC-HVDC系统中PIDNN控制器参数寻优INCPSO算法步骤,并进行算例分析验证。仿真结果表明,该算法寻优效率和搜索精度高,鲁棒性好,INCPSO-PIDNN控制器可用于海上风电场柔性直流输电变流器。 展开更多
关键词 比例–积分–微分神经网络 柔性直流输电 海上风电 粒子优化算法 混沌变异 限制竞争小生境算法 适应度共享 帐篷映射
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部