期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
反向传播-人工神经网络在辐照黑椒牛肉品质预测中的应用 被引量:7
1
作者 游云 黄晓霞 +6 位作者 肖斯立 刘巧瑜 蓝碧锋 胡昕 吴俊师 杨娟 曾晓房 《食品科学》 EI CAS CSCD 北大核心 2024年第8期228-237,共10页
为探究不同辐照处理对贮藏过程中黑椒牛肉品质变化的影响,建立基于理化指标的多种品质预测模型。3~4 kGy的辐照剂量能够有效延缓黑椒牛肉在贮藏过程中的汁液流失、脂质氧化和蛋白质降解,保持其硬度和微观结构,在一定程度上增加呈鲜味(A... 为探究不同辐照处理对贮藏过程中黑椒牛肉品质变化的影响,建立基于理化指标的多种品质预测模型。3~4 kGy的辐照剂量能够有效延缓黑椒牛肉在贮藏过程中的汁液流失、脂质氧化和蛋白质降解,保持其硬度和微观结构,在一定程度上增加呈鲜味(Asp)和甜味(Gly、Ala、Ser)游离氨基酸的含量。以辐照黑椒牛肉的汁液流失率、硫代巴比妥酸反应产物值、总挥发性盐基氮值、原肌球蛋白条带强度比率、肌球蛋白重链条带强度比率和总游离氨基酸含量为输入变量,优化了反向传播-人工神经网络(backpropagation-artificial neural network,BP-ANN)模型。训练函数为ReLU函数,隐藏层神经元个数为14个,迭代次数100次。结果表明,6-14-6 BP-ANN模型可以较好地预测辐照黑椒牛肉的品质变化,该模型在预测辐照肉制品的多种品质方面具有很大潜力。 展开更多
关键词 黑椒牛肉 ^(60)Co-γ射线 品质 反向传播-人工神经网络 预测模型
在线阅读 下载PDF
基于遗传算法-反向传播神经网络优化高压-超声-酶解法提取羊皮胶原蛋白工艺 被引量:1
2
作者 朱明 张德权 +5 位作者 李少博 陈丽 侯成立 程成鹏 于江颖 关文强 《肉类研究》 北大核心 2024年第6期42-50,共9页
采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最... 采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最佳提取参数为高压时间23 min、超声时间22 min、酶添加量3.2%、酶解时间222 min,羊皮胶原蛋白提取率达到(80.5±1.6)%,较传统的木瓜蛋白酶法提高40%;紫外-可见吸收光谱和傅里叶变换红外光谱结果显示,此条件下提取的羊皮胶原蛋白结构完整,高压-超声-酶解法对胶原蛋白的破坏较小。 展开更多
关键词 羊皮 羊皮胶原蛋白 高压-超声-酶解法 遗传算法-反向传播神经网络 响应面法
在线阅读 下载PDF
基于KNN-BP神经网络车辆驻留时间预测立体车库RGV待命位策略
3
作者 后国栋 李建国 《科学技术与工程》 北大核心 2025年第24期10478-10486,共9页
平面移动式立体车库待命位策略可以提高车辆出库效率,减少顾客等待时间,通过预测库内车辆出库时间节点,设计分区待命位策略。针对反向传播(back propagation, BP)神经网络存在样本依赖性较强的特点,提出一种K-近邻算法(k-nearest neighb... 平面移动式立体车库待命位策略可以提高车辆出库效率,减少顾客等待时间,通过预测库内车辆出库时间节点,设计分区待命位策略。针对反向传播(back propagation, BP)神经网络存在样本依赖性较强的特点,提出一种K-近邻算法(k-nearest neighbor, KNN)-BP神经网络预测模型,以是否为工作日、工作日特殊时段(如早高峰、晚高峰),气温,降水4个方面作为特征向量,采用二进制集合转换构建各特征向量集,通过KNN对异常数据进行分组,提高BP神经网络预测精度,并基于预测时间建立出库概率分布,设定区域优先级参数以及RGV(rail guided vehicle)待命位策略。编写仿真程序,以西安小寨某商用立体车库运行数据进行验证,仿真结果表明:KNN-BP神经网络预测模型R^(2)较传统BP神经网络提高了20.23%,设计待命位策略下较无待命位策略顾客平均等待时间减小35.82%,RGV平均服务时间降低39.51%,RGV运行能耗降低38.32%;较文献引用策略顾客平均等待时间减小14.18%,RGV平均服务时间降低13.29%,RGV运行能耗降低20.89%。研究成果为提高立体车库车运行效率提供参考。 展开更多
关键词 交通工程 立体车库 待命位 K-近邻算法(KNN)-反向传播(BP)神经网络 RGV
在线阅读 下载PDF
人工神经网络及模拟退火算法应用于原子吸收光谱法同时测定钙、磷 被引量:2
4
作者 陈国松 黄招霞 +1 位作者 唐美华 张之翼 《理化检验(化学分册)》 CAS CSCD 北大核心 2008年第7期597-599,603,共4页
试验发现:原子吸收光谱法(AAS)在442.7 nm波长处测定钙时受到大于0.10 mg·L^(-1)磷共存的干扰,使钙的测定结果偏低,而且此负偏差降低的幅度随磷浓度的增加而增大。试验还发现:当共存磷的量在0.1~6.0mg·L^(-1)之间时,钙测量... 试验发现:原子吸收光谱法(AAS)在442.7 nm波长处测定钙时受到大于0.10 mg·L^(-1)磷共存的干扰,使钙的测定结果偏低,而且此负偏差降低的幅度随磷浓度的增加而增大。试验还发现:当共存磷的量在0.1~6.0mg·L^(-1)之间时,钙测量值的负偏差幅度与磷浓度之间存在明显的相关性。应用反向传播人工神经网络(BP-ANN)及模拟退火两种计算法对上述非线性干扰效应进行了研究,并提出了在单一波长检测的条件下,钙、磷两元素的原子吸收光谱法同时测定,此法应用于循环水中钙、磷的同时测定。两元素的检测范围依次为0.08~10.0 mg·L^(-1)及0.10~6.0mg·L^(-1),测得其回收率分别为100.5%和98.0%。 展开更多
关键词 原子吸收光谱法 反向传播-人工神经网络算法 模拟退火算法
在线阅读 下载PDF
复合对向-反向传播人工神经网络模型及其应用 被引量:1
5
作者 张尊建 余书勤 +1 位作者 相秉仁 安登魁 《中国药科大学学报》 CAS CSCD 北大核心 1996年第11期701-704,共4页
组合Kohonen竞争学习和反向传播学习的优点,本文首次提出了复合对向-反向传播人工神经网络模型,该模型较好地体现了生物神经网络系统信息处理时的自适应、自组织、分布式存贮及并行处理等特点。它保留了反向传播网络的优点,... 组合Kohonen竞争学习和反向传播学习的优点,本文首次提出了复合对向-反向传播人工神经网络模型,该模型较好地体现了生物神经网络系统信息处理时的自适应、自组织、分布式存贮及并行处理等特点。它保留了反向传播网络的优点,同时较后者更易收敛,计算时间缩短,网络参数设置也更为自由。通过在临床精液检查结果分析中的成功应用,证明了该系统的有效性和可靠性。 展开更多
关键词 人工神经网络 学习算法 模型 复合对向 反向传播
在线阅读 下载PDF
关于系统级故障诊断的烟花-反向传播神经网络算法 被引量:5
6
作者 归伟夏 陆倩 苏美力 《电子与信息学报》 EI CSCD 北大核心 2020年第5期1102-1109,共8页
为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略... 为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略、协作算子以及最优算子,设计新的适应度函数,优化变异算子、映射规则和选择策略。然后,利用烟花算法全局搜索能力和局部搜索能力的自调节机制,优化BP神经网络中的权值和阈值的寻优过程。仿真实验结果表明,该文算法相较于其他算法不仅有效地降低了迭代次数和训练时间,而且还进一步提高了诊断精度。 展开更多
关键词 系统级故障诊断 烟花算法 反向传播神经网络 PMC模型 烟花-反向传播神经网络算法
在线阅读 下载PDF
人工神经网络优化油莎豆油亚临界萃取工艺 被引量:1
7
作者 邓淑君 郝琴 +3 位作者 万楚筠 郭婷婷 魏春磊 郑明明 《中国油料作物学报》 CAS CSCD 北大核心 2024年第5期1178-1186,共9页
为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-... 为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-BP-ANN模型的寻优结果进行了比较。结果表明,RSM模型优化的萃取条件为:料液比(脱皮油莎豆∶丁烷)1∶10.36 g/mL、萃取时间45 min、萃取温度30℃、坯料厚度0.5 mm;PSOBP-ANN模型优化的萃取条件为:料液比1∶10.67 g/mL、萃取时间40.10 min、萃取温度34℃、轧坯厚度0.5 mm。在最佳条件下,RSM模型预测提取率为91.63%,验证值为94.27%,相对误差2.56%;PSO-BP-ANN模型预测值为95.58%,验证值为95.14%,相对误差0.46%。采用人工神经网络耦合粒子群算法(PSO-BP-ANN)优化油莎豆油亚临界萃取工艺,具有提取率高、相对误差小等优势。本研究可为亚临界萃取技术在油莎豆油高效制取中应用提供参考。 展开更多
关键词 反向传播人工神经网络 粒子群优化算法 亚临界丁烷萃取 脱皮油莎豆 工艺优化
在线阅读 下载PDF
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型 被引量:8
8
作者 蒋华伟 郭陶 杨震 《科学技术与工程》 北大核心 2021年第21期8951-8956,共6页
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化... 在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型。采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型。为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性。 展开更多
关键词 小麦储藏品质 多指标分析 粒子群算法 改进粒子群优化-反向传播神经网络(IPSO-BPNN) 预测模型
在线阅读 下载PDF
基于人工神经网络的沿海地区底泥盐度计算模型
9
作者 袁静 王锐 喻国良 《华北水利水电大学学报(自然科学版)》 北大核心 2024年第4期102-108,共7页
底泥盐度与海洋科学、河口研究、环境管理等密切相关,现有的底泥盐度计算公式存在精度不足、适用性有限等问题。为此,开展了271组室内试验和10组户外试验,整合了其他学者的研究数据,以底泥电导率、泥沙浓度、温度和细颗粒表面系数为模... 底泥盐度与海洋科学、河口研究、环境管理等密切相关,现有的底泥盐度计算公式存在精度不足、适用性有限等问题。为此,开展了271组室内试验和10组户外试验,整合了其他学者的研究数据,以底泥电导率、泥沙浓度、温度和细颗粒表面系数为模型输入变量,分别建立了用于计算沿海地区底泥盐度的反向传播人工神经网络(BP-ANN)模型、粒子群优化的反向传播人工神经网络(PSO-BP-ANN)模型、结合遗传算法的反向传播人工神经网络(GA-BP-ANN)模型。与现有的底泥盐度计算公式相比,新建模型的精度更高,可为沿海地区底泥盐度的确定提供更多可供选择的预测方法。 展开更多
关键词 底泥盐度 人工神经网络模型 反向传播 粒子群优化 遗传算法
在线阅读 下载PDF
结合进化算法的人工神经网络在变压器故障诊断中的应用 被引量:1
10
作者 臧宏志 徐建政 俞晓冬 《高压电器》 CAS CSCD 北大核心 2002年第4期37-38,共2页
人工神经网络在变压器故障诊断中有广泛的应用。常用的BP算法具有易陷入局部极小、收敛速度慢等缺点 ,给故障诊断带来不便。为此提出利用进化算法优化人工神经网络结构的初值 ,利用可靠性分析技术对输入数据进行处理 ,从而有助于较快获... 人工神经网络在变压器故障诊断中有广泛的应用。常用的BP算法具有易陷入局部极小、收敛速度慢等缺点 ,给故障诊断带来不便。为此提出利用进化算法优化人工神经网络结构的初值 ,利用可靠性分析技术对输入数据进行处理 ,从而有助于较快获得最佳的权值矩阵 ,实现变压器故障诊断。 展开更多
关键词 人工神经网络 反向传播网络 进化算法 可靠性数据分析
在线阅读 下载PDF
改进人工神经网络算法及其在E面分支波导耦合器优化设计中的应用 被引量:2
11
作者 许殿 史小卫 《微波学报》 CSCD 北大核心 2005年第4期16-19,共4页
将混合遗传算法用于人工神经网络,训练出全局最优的权值和偏差,解决了反向传播网络收敛于局部极值的问题。运用该方法训练出E面分支波导耦合器的输入输出人工神经网络模型,并以此仿真并优化其他结构的耦合器。相对于精确电磁场数值计算... 将混合遗传算法用于人工神经网络,训练出全局最优的权值和偏差,解决了反向传播网络收敛于局部极值的问题。运用该方法训练出E面分支波导耦合器的输入输出人工神经网络模型,并以此仿真并优化其他结构的耦合器。相对于精确电磁场数值计算,前者在保证有较高仿真精度的前提下,大大提高了仿真速度。 展开更多
关键词 人工神经网络 反向传播网络 混合遗传算法 E面分支波导耦合器 人工神经网络算法 波导耦合器 优化设计 E面 人工神经网络模型 应用 仿真精度
在线阅读 下载PDF
人工神经网络技术及其在板料成形智能化中的应用 被引量:9
12
作者 饶进军 包忠诩 黄菊花 《塑性工程学报》 CAS CSCD 2002年第1期17-21,共5页
本文在概述人工神经网络特性、BP网络模型及BP算法的基础上 ,对BP算法改进、训练样本及网络结构等相关技术进行了总结。重点综述了人工神经网络技术在板料成形专家系统、成形力预测、参数识别、智能控制、故障诊断、缺陷分析、板料成形... 本文在概述人工神经网络特性、BP网络模型及BP算法的基础上 ,对BP算法改进、训练样本及网络结构等相关技术进行了总结。重点综述了人工神经网络技术在板料成形专家系统、成形力预测、参数识别、智能控制、故障诊断、缺陷分析、板料成形性能研究和模具优化设计等板料成形智能化相关技术中的应用 ,探讨了应用中存在的问题 。 展开更多
关键词 人工神经网络 板料成形 反向传播算法 专家系统 故障诊断 优化 智能化
在线阅读 下载PDF
基于人工神经网络的数字字符识别 被引量:10
13
作者 武强 童学锋 季隽 《计算机工程》 CAS CSCD 北大核心 2003年第14期112-113,132,共3页
提出一种用神经网络来识别含有噪声的数字字符的方法。神经网络采用带有动量项和自适应学习率的反向传播算法(BP)进行训练。样本由理想信号和带有噪声的信号组成。通过比较测试结果得出对同一网络既使用理想信号又使用带有噪声的信号对... 提出一种用神经网络来识别含有噪声的数字字符的方法。神经网络采用带有动量项和自适应学习率的反向传播算法(BP)进行训练。样本由理想信号和带有噪声的信号组成。通过比较测试结果得出对同一网络既使用理想信号又使用带有噪声的信号对网络进行训练可使系统具有更强的容错性。最后给出的实验结果证明了该方法的有效性。 展开更多
关键词 人工神经网络 反向传播算法 有噪声的数字字符识别
在线阅读 下载PDF
基于人工神经网络的病症诊断原型系统 被引量:18
14
作者 叶进 邢传鼎 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期43-47,共5页
知识获取是目前专家系统和知识库系统的“瓶颈”问题。解决这个问题的关键在于知识的自动获取方法的实现,也就是希望能够达到智能获取。这里以知识库系统理论为基础,在中医医案的研究中,实现对病症推断的自动获取,探讨知识获取实现的方... 知识获取是目前专家系统和知识库系统的“瓶颈”问题。解决这个问题的关键在于知识的自动获取方法的实现,也就是希望能够达到智能获取。这里以知识库系统理论为基础,在中医医案的研究中,实现对病症推断的自动获取,探讨知识获取实现的方法,研究人工神经网络的BP算法的应用。 展开更多
关键词 知识获取 人工神经网络 反向传播(BP)算法
在线阅读 下载PDF
基于自由搜索人工神经网络的坡地入渗量预测 被引量:1
15
作者 李新虎 张展羽 +3 位作者 杨洁 张国华 王斌 王超 《农业工程学报》 EI CAS CSCD 北大核心 2009年第12期193-197,共5页
该文应用基于自由搜索算法的BP(backpropagation)网络模型对自然降雨条件下不同处理措施的红壤坡地入渗规律进行了预测,选择降雨量、最大降雨强度、降雨历时、土壤初始含水率、土壤体积质量、通气孔度和下垫面状况7项指标作为网络输入,... 该文应用基于自由搜索算法的BP(backpropagation)网络模型对自然降雨条件下不同处理措施的红壤坡地入渗规律进行了预测,选择降雨量、最大降雨强度、降雨历时、土壤初始含水率、土壤体积质量、通气孔度和下垫面状况7项指标作为网络输入,土壤入渗量单项指标作为网络输出,结果表明:基于自由搜索算法的BP网络模型可以有效地预测自然降雨条件下不同处理措施坡地入渗规律,预测的平均相对误差为11.08%,经t检验和回归分析表明预测值和实测值相差不大,具有较好的一致性,决定系数为0.9715,并和传统的BP网络进行了比较,结果显示基于自由搜索算法的BP网络预测优于传统的BP网络,模型具有较高的精度和稳定性。 展开更多
关键词 降雨 入渗 反向传播 自由搜索算法 坡地 人工神经网络
在线阅读 下载PDF
用人工神经网络对PZT陶瓷进行性能分析与优化 被引量:1
16
作者 郭栋 齐西伟 +2 位作者 李龙土 南策文 桂治轮 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2004年第1期223-228,共6页
选取了几种常用的金属氧化物掺杂剂,在均匀实验结构的基础上用人工神经网络方法对掺杂PZT陶瓷的性能进行分析和优化.实验结果表明,掺杂PZT体系的人工神经网络模型要比多重非线形回归模型准确得多,而且以人工神经网络模型为指导对材料进... 选取了几种常用的金属氧化物掺杂剂,在均匀实验结构的基础上用人工神经网络方法对掺杂PZT陶瓷的性能进行分析和优化.实验结果表明,掺杂PZT体系的人工神经网络模型要比多重非线形回归模型准确得多,而且以人工神经网络模型为指导对材料进行优化后的性能预测也比较准确,说明人工神经网络在陶瓷这种多组分固溶体材料的性能分析中具有良好的使用前景. 展开更多
关键词 压电陶瓷 人工神经网络 误差反向传播算法 电学性能
在线阅读 下载PDF
基于BP人工神经网络的含蜡原油触变应力计算 被引量:3
17
作者 赵宗昌 张晓冬 +1 位作者 王栋 徐金铭 《大连理工大学学报》 EI CAS CSCD 北大核心 2005年第2期181-185,共5页
含蜡原油的流变性对其管道输送有着重要的影响.当原油温度逐渐接近凝点时,原油表现为非牛顿流体,其流变性表现出异常复杂的触变性.利用人工神经网络较强的非线性逼近、良好的自适应和预测性能,采用误差反向传播算法(即BP算法)对含蜡原... 含蜡原油的流变性对其管道输送有着重要的影响.当原油温度逐渐接近凝点时,原油表现为非牛顿流体,其流变性表现出异常复杂的触变性.利用人工神经网络较强的非线性逼近、良好的自适应和预测性能,采用误差反向传播算法(即BP算法)对含蜡原油的触变剪切应力进行了计算,计算结果与实验结果和采用R-G模型方程计算的结果进行了对比.结果表明,BP网络计算的精度高于R-G模型方程计算的精度,BP网络和R-G模型的计算结果与实验结果的最大相对误差分别为5.0%和12.7%. 展开更多
关键词 含蜡原油 BP人工神经网络 应力计算 误差反向传播算法 模型方程 计算结果 非牛顿流体 非线性逼近 管道输送 预测性能 剪切应力 BP算法 网络计算 BP网络 流变性 油温度 触变性 自适应 实验 精度 接近
在线阅读 下载PDF
人工神经网络的理论、应用与实现研究 被引量:3
18
作者 李平 岳祖州 《大连理工大学学报》 EI CAS CSCD 北大核心 1997年第S2期91-91,共1页
人工神经网络的理论、应用与实现研究李平岳祖州(山东大学光电子信息工程系济南250100)人工神经网络是模拟动物和人脑的工作方式以实现大脑的某些功能的信息科学;它具有信息分布存储、高速并行处理、自学习功能和容错性等特点... 人工神经网络的理论、应用与实现研究李平岳祖州(山东大学光电子信息工程系济南250100)人工神经网络是模拟动物和人脑的工作方式以实现大脑的某些功能的信息科学;它具有信息分布存储、高速并行处理、自学习功能和容错性等特点,近年来引起了广泛的重视。在模拟大... 展开更多
关键词 人工神经网络 联想记忆 多层前馈网络 误差反向传播算法 光电子信息 光学实现 自组织映射 关联存储器 非线性映射 实现研究
在线阅读 下载PDF
人工神经网络对NaNbO_(3)基陶瓷介电性能的预测研究 被引量:1
19
作者 周毅 王嘉璇 米忠华 《中国陶瓷》 CAS CSCD 北大核心 2023年第11期39-45,共7页
NaNbO_(3)基陶瓷在电介质储能领域具有极大的应用潜力。研究在对NaNbO_(3)基复合陶瓷材料开展实验研究的基础上,基于人工神经网络方法构建BP神经网络与优化的GA-BP神经网络模型,以磷酸盐玻璃相的添加量、烧结温度、烧结时间作为输入,介... NaNbO_(3)基陶瓷在电介质储能领域具有极大的应用潜力。研究在对NaNbO_(3)基复合陶瓷材料开展实验研究的基础上,基于人工神经网络方法构建BP神经网络与优化的GA-BP神经网络模型,以磷酸盐玻璃相的添加量、烧结温度、烧结时间作为输入,介电性能(介电常数与介电损耗)作为输出,对NaNbO3基复合陶瓷材料的介电性能开展预测研究。结果表明,通过GA-BP网络预测的介电常数相对误差最大仅为1.03%,介电损耗预测结果最大值仅为-3.18%,完全符合应用需求。 展开更多
关键词 人工神经网络 反向传播 遗传算法 介电性能 模型优化
在线阅读 下载PDF
基于GA-BP神经网络算法的FDM 3D打印制件拉伸性能预测 被引量:7
20
作者 白鹤 赵明侠 +4 位作者 袁一如 刘亚明 何石磊 庞瑞 郭晓东 《塑料工业》 CAS CSCD 北大核心 2022年第9期192-197,共6页
为进一步研究熔融沉积成型(FDM)3D打印制件力学性能与工艺参数之间的关系,试验以聚乳酸(PLA)为材料,参考正交试验和神经网络模型设计原则,利用遗传算法(GA)对反向传播(BP)神经网络初始值进行优化,建立GA-BP神经网络模型,以分层厚度、填... 为进一步研究熔融沉积成型(FDM)3D打印制件力学性能与工艺参数之间的关系,试验以聚乳酸(PLA)为材料,参考正交试验和神经网络模型设计原则,利用遗传算法(GA)对反向传播(BP)神经网络初始值进行优化,建立GA-BP神经网络模型,以分层厚度、填充密度、喷嘴温度、填充速度以及外壳厚度为输入层参数,拉伸强度为输出层参数进行训练和预测,并分析其预测精度。通过对GA-BP和BP神经网络模型的预测结果进行对比发现,GA-BP神经网络模型预测值与测试实际值更为接近,误差平均值为2.27%,而BP神经网络模型预测误差平均值为4.10%,且GA-BP神经网络模型评价指标值均优于BP神经网络模型,故GA-BP神经网络模型预测精度更高,可为提升FDM 3D打印制件力学性能,优化成型工艺,指导工业生产提供参考。 展开更多
关键词 遗传算法-反向传播神经网络 熔融沉积成型 拉伸性能 工艺参数 预测
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部