期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
反向传播-人工神经网络在辐照黑椒牛肉品质预测中的应用 被引量:7
1
作者 游云 黄晓霞 +6 位作者 肖斯立 刘巧瑜 蓝碧锋 胡昕 吴俊师 杨娟 曾晓房 《食品科学》 EI CAS CSCD 北大核心 2024年第8期228-237,共10页
为探究不同辐照处理对贮藏过程中黑椒牛肉品质变化的影响,建立基于理化指标的多种品质预测模型。3~4 kGy的辐照剂量能够有效延缓黑椒牛肉在贮藏过程中的汁液流失、脂质氧化和蛋白质降解,保持其硬度和微观结构,在一定程度上增加呈鲜味(A... 为探究不同辐照处理对贮藏过程中黑椒牛肉品质变化的影响,建立基于理化指标的多种品质预测模型。3~4 kGy的辐照剂量能够有效延缓黑椒牛肉在贮藏过程中的汁液流失、脂质氧化和蛋白质降解,保持其硬度和微观结构,在一定程度上增加呈鲜味(Asp)和甜味(Gly、Ala、Ser)游离氨基酸的含量。以辐照黑椒牛肉的汁液流失率、硫代巴比妥酸反应产物值、总挥发性盐基氮值、原肌球蛋白条带强度比率、肌球蛋白重链条带强度比率和总游离氨基酸含量为输入变量,优化了反向传播-人工神经网络(backpropagation-artificial neural network,BP-ANN)模型。训练函数为ReLU函数,隐藏层神经元个数为14个,迭代次数100次。结果表明,6-14-6 BP-ANN模型可以较好地预测辐照黑椒牛肉的品质变化,该模型在预测辐照肉制品的多种品质方面具有很大潜力。 展开更多
关键词 黑椒牛肉 ^(60)Co-γ射线 品质 反向传播-人工神经网络 预测模型
在线阅读 下载PDF
基于反向传播人工神经网络法构建果实及种子类中药饮片自动煎药机煎煮得药量预测模型 被引量:1
2
作者 汤波 朱江 +1 位作者 胡爱红 朱茂 《中成药》 北大核心 2025年第4期1386-1390,共5页
目的基于反向传播人工神经网络法构建果实及种子类中药饮片煎煮得药量预测模型。方法通过实验收集常用的166种果实及种子类中药饮片的煎煮信息,以浸泡时间、机器死体积、吸水系数、饮片质量、饮片厚度、平均体积、煎煮时间、加水量、煎... 目的基于反向传播人工神经网络法构建果实及种子类中药饮片煎煮得药量预测模型。方法通过实验收集常用的166种果实及种子类中药饮片的煎煮信息,以浸泡时间、机器死体积、吸水系数、饮片质量、饮片厚度、平均体积、煎煮时间、加水量、煎煮温度、得药量为变量,采用反向传播人工神经网络法构建中药饮片煎煮得药量的预测模型。结果与实测值相比,36例验证组预测数据的误差均在0.5%以内,得药量的真实值和预测值的相关系数为0.994,预测结果较为理想。结论该模型可用于预测果实及种子类中药饮片煎煮得药量,有望为中药饮片煎药加水量提供依据。 展开更多
关键词 中药饮片 果实 种子 煎煮得药量 人工神经网络 反向传播 自动煎药机
在线阅读 下载PDF
基于遗传算法-反向传播神经网络优化高压-超声-酶解法提取羊皮胶原蛋白工艺 被引量:1
3
作者 朱明 张德权 +5 位作者 李少博 陈丽 侯成立 程成鹏 于江颖 关文强 《肉类研究》 北大核心 2024年第6期42-50,共9页
采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最... 采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最佳提取参数为高压时间23 min、超声时间22 min、酶添加量3.2%、酶解时间222 min,羊皮胶原蛋白提取率达到(80.5±1.6)%,较传统的木瓜蛋白酶法提高40%;紫外-可见吸收光谱和傅里叶变换红外光谱结果显示,此条件下提取的羊皮胶原蛋白结构完整,高压-超声-酶解法对胶原蛋白的破坏较小。 展开更多
关键词 羊皮 羊皮胶原蛋白 高压-超声-酶解法 遗传算法-反向传播神经网络 响应面法
在线阅读 下载PDF
基于PSO-BP神经网络的SiC MOSFET模块寿命预测方法研究与实现
4
作者 毛明波 孟昭亮 +1 位作者 高勇 杨媛 《电源学报》 北大核心 2025年第1期229-235,258,共8页
针对目前碳化硅金属氧化物半导体场效应晶体管Si CMOSFET(siliconcarbidemetal-oxide-semiconductor field-effect transistor)实际工况中在线寿命预测难度大的问题,提出1种基于粒子群优化-反向传播PSO-BP(particle swarm optimization-... 针对目前碳化硅金属氧化物半导体场效应晶体管Si CMOSFET(siliconcarbidemetal-oxide-semiconductor field-effect transistor)实际工况中在线寿命预测难度大的问题,提出1种基于粒子群优化-反向传播PSO-BP(particle swarm optimization-back propagation)神经网络的SiC MOSFET模块寿命预测数字化实现方法。首先,利用导通压降平台提取Si CMOSFET的导通压降作为温敏电参数,建立基于实验数据的结温预测方案;其次,利用功率循环加速老化实验平台,提取老化特征数据,建立基于PSO-BP神经网络的寿命预测方案;然后,将结温预测方案与寿命预测方案移植到可编程阵列逻辑中,实现SiC MOSFET寿命预测数字化;最后,设计了验证电路。实验表明,数字化显示的结温与真实结温的误差为4.73℃,与真实寿命次数的误差百分比为4.1%,证明所提寿命预测方法得到了数字化实现,并能够准确预测SiC MOSFET模块的寿命次数。 展开更多
关键词 SiC MOSFET 粒子群优化-反向传播 寿命预测 数字化
在线阅读 下载PDF
基于神经网络-高斯赫尔默特模型联合多点GNSS定位方法 被引量:1
5
作者 林海飞 彭友志 +1 位作者 夏玉国 何浩鹏 《大地测量与地球动力学》 北大核心 2025年第3期303-307,共5页
为降低复杂环境下GNSS定位误差,提出一种联合高精度测站和距离交会精确估计定位点坐标的方法。该方法首先将观测方程构建为非线性高斯-赫尔默特模型,针对其中的非线性问题,引入反向传播(back-propagation,BP)神经网络进行辅助处理。与... 为降低复杂环境下GNSS定位误差,提出一种联合高精度测站和距离交会精确估计定位点坐标的方法。该方法首先将观测方程构建为非线性高斯-赫尔默特模型,针对其中的非线性问题,引入反向传播(back-propagation,BP)神经网络进行辅助处理。与传统线性化方法相比,BP神经网络能够有效拟合复杂的非线性函数关系。仿真和实测结果表明,该方法能有效降低复杂环境对定位精度的影响,E、N、U方向定位精度分别提高78.1%、72.8%、79.2%。 展开更多
关键词 GNSS 复杂环境 高斯-赫尔模特模型 反向传播神经网络 误差估计
在线阅读 下载PDF
基于KNN-BP神经网络车辆驻留时间预测立体车库RGV待命位策略
6
作者 后国栋 李建国 《科学技术与工程》 北大核心 2025年第24期10478-10486,共9页
平面移动式立体车库待命位策略可以提高车辆出库效率,减少顾客等待时间,通过预测库内车辆出库时间节点,设计分区待命位策略。针对反向传播(back propagation, BP)神经网络存在样本依赖性较强的特点,提出一种K-近邻算法(k-nearest neighb... 平面移动式立体车库待命位策略可以提高车辆出库效率,减少顾客等待时间,通过预测库内车辆出库时间节点,设计分区待命位策略。针对反向传播(back propagation, BP)神经网络存在样本依赖性较强的特点,提出一种K-近邻算法(k-nearest neighbor, KNN)-BP神经网络预测模型,以是否为工作日、工作日特殊时段(如早高峰、晚高峰),气温,降水4个方面作为特征向量,采用二进制集合转换构建各特征向量集,通过KNN对异常数据进行分组,提高BP神经网络预测精度,并基于预测时间建立出库概率分布,设定区域优先级参数以及RGV(rail guided vehicle)待命位策略。编写仿真程序,以西安小寨某商用立体车库运行数据进行验证,仿真结果表明:KNN-BP神经网络预测模型R^(2)较传统BP神经网络提高了20.23%,设计待命位策略下较无待命位策略顾客平均等待时间减小35.82%,RGV平均服务时间降低39.51%,RGV运行能耗降低38.32%;较文献引用策略顾客平均等待时间减小14.18%,RGV平均服务时间降低13.29%,RGV运行能耗降低20.89%。研究成果为提高立体车库车运行效率提供参考。 展开更多
关键词 交通工程 立体车库 待命位 K-近邻算法(KNN)-反向传播(BP)神经网络 RGV
在线阅读 下载PDF
反向传播人工神经网络分光光度法同时测定环境水样中的苯酚、间苯二酚和间氨基酚 被引量:9
7
作者 曹永生 陈奕卫 +3 位作者 祖金凤 朱金林 徐学诚 成荣明 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2003年第4期751-754,共4页
本文应用人工神经网络原理 ,采用误差反向传播算法 ,对环境水样中的苯酚、间苯二酚和间氨基酚可以用分光光度法不经分离进行了同时测定。三种酚类的平均回收率分别为 98 0 % ,99 6 %和 99 7%。实验证明 ,反向传播 人工神经网络方法应用... 本文应用人工神经网络原理 ,采用误差反向传播算法 ,对环境水样中的苯酚、间苯二酚和间氨基酚可以用分光光度法不经分离进行了同时测定。三种酚类的平均回收率分别为 98 0 % ,99 6 %和 99 7%。实验证明 ,反向传播 人工神经网络方法应用在本体系中进行结果校正 ,结果令人满意。 展开更多
关键词 反向传播 人工神经网络 分光光度法 同时测定 环境水样 苯酚 间苯二酚 间氨基酚 环境污染
在线阅读 下载PDF
复合对向-反向传播人工神经网络模型及其应用 被引量:1
8
作者 张尊建 余书勤 +1 位作者 相秉仁 安登魁 《中国药科大学学报》 CAS CSCD 北大核心 1996年第11期701-704,共4页
组合Kohonen竞争学习和反向传播学习的优点,本文首次提出了复合对向-反向传播人工神经网络模型,该模型较好地体现了生物神经网络系统信息处理时的自适应、自组织、分布式存贮及并行处理等特点。它保留了反向传播网络的优点,... 组合Kohonen竞争学习和反向传播学习的优点,本文首次提出了复合对向-反向传播人工神经网络模型,该模型较好地体现了生物神经网络系统信息处理时的自适应、自组织、分布式存贮及并行处理等特点。它保留了反向传播网络的优点,同时较后者更易收敛,计算时间缩短,网络参数设置也更为自由。通过在临床精液检查结果分析中的成功应用,证明了该系统的有效性和可靠性。 展开更多
关键词 人工神经网络 学习算法 模型 复合对向 反向传播
在线阅读 下载PDF
变量重要性-反向传播人工神经网络辅助激光诱导击穿光谱测定铁矿石中硅、铝、钙和镁含量 被引量:4
9
作者 刘曙 金悦 +3 位作者 苏飘 闵红 安雅睿 吴晓红 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第10期3132-3142,共11页
快速准确测定铁矿石中的硅、铝、钙、镁含量对铁矿石质量评价具有重要作用。受制于多变量分析方法过拟合现象以及不同种类样品基体效应,使用激光诱导击穿光谱(LIBS)准确测定铁矿石中硅、铝、钙、镁含量仍然是当前存在的挑战。采用变量... 快速准确测定铁矿石中的硅、铝、钙、镁含量对铁矿石质量评价具有重要作用。受制于多变量分析方法过拟合现象以及不同种类样品基体效应,使用激光诱导击穿光谱(LIBS)准确测定铁矿石中硅、铝、钙、镁含量仍然是当前存在的挑战。采用变量重要性-反向传播人工神经网络(VI-BP-ANN)辅助LIBS定量分析铁矿石中硅(以SiO_(2)计)、铝(以Al_(2)O_(3)计)、钙(以CaO计)和镁(以MgO计)的含量。在这项研究中,收集了12种244批铁矿石代表性样品的LIBS光谱,优化了光谱预处理方法,使用随机森林(RF)对LIBS光谱特征的重要性进行了测量,使用袋外(OOB)误差优化RF模型参数,变量重要性阈值用于优化BP-ANN校准模型的输入变量。变量重要性阈值和神经元数量通过五折交叉验证(5-CV)的测定系数(R^(2))和均方根误差(RMSE)进行优化。结果显示测试样本SiO_(2)、Al_(2)O_(3)、CaO和MgO含量预测均方根误差(RMSEP)分别为0.3772 wt%、0.1339 wt%、0.0592 wt%和0.1411 wt%,R^(2)分别为0.9701、0.9554、0.9871、0.9975。相比于使用相同的预处理方法作为PLS、SVM、RF和BP-ANN四种模型的输入,VI-BP-ANN在校准集和预测集都显示出出色的预测能力。结果表明LIBS与VI-BP-ANN的结合有潜力在实际应用中实现铁矿石硅、铝、钙、镁含量的快速准确预测。 展开更多
关键词 铁矿石 反向传播人工神经网络 变量重要性 定量分析 激光诱导击穿光谱
在线阅读 下载PDF
人工神经网络优化油莎豆油亚临界萃取工艺 被引量:1
10
作者 邓淑君 郝琴 +3 位作者 万楚筠 郭婷婷 魏春磊 郑明明 《中国油料作物学报》 CAS CSCD 北大核心 2024年第5期1178-1186,共9页
为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-... 为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-BP-ANN模型的寻优结果进行了比较。结果表明,RSM模型优化的萃取条件为:料液比(脱皮油莎豆∶丁烷)1∶10.36 g/mL、萃取时间45 min、萃取温度30℃、坯料厚度0.5 mm;PSOBP-ANN模型优化的萃取条件为:料液比1∶10.67 g/mL、萃取时间40.10 min、萃取温度34℃、轧坯厚度0.5 mm。在最佳条件下,RSM模型预测提取率为91.63%,验证值为94.27%,相对误差2.56%;PSO-BP-ANN模型预测值为95.58%,验证值为95.14%,相对误差0.46%。采用人工神经网络耦合粒子群算法(PSO-BP-ANN)优化油莎豆油亚临界萃取工艺,具有提取率高、相对误差小等优势。本研究可为亚临界萃取技术在油莎豆油高效制取中应用提供参考。 展开更多
关键词 反向传播人工神经网络 粒子群优化算法 亚临界丁烷萃取 脱皮油莎豆 工艺优化
在线阅读 下载PDF
构建并验证反向传播神经网络模型对筛选重症手足口病影响因素的性能 被引量:1
11
作者 陈琳 冯慧芬 +1 位作者 屈质 马驰 《安徽医科大学学报》 北大核心 2024年第12期2222-2229,共8页
目的通过构建反向传播神经网络(BPNN)模型,筛选重症手足口病(HFMD)临床早期预警指标,探讨神经网络技术在临床中的应用价值。方法收集河南省新乡医学院第一附属医院感染科及儿科2019年1月至2023年1月收治的HFMD患儿临床资料,使用SPSS Mod... 目的通过构建反向传播神经网络(BPNN)模型,筛选重症手足口病(HFMD)临床早期预警指标,探讨神经网络技术在临床中的应用价值。方法收集河南省新乡医学院第一附属医院感染科及儿科2019年1月至2023年1月收治的HFMD患儿临床资料,使用SPSS Modeler18.0将数据分为70%的训练样本和30%的测试样本,并构建BPNN模型和Logistic模型,对比评估模型预测准确性及筛选效果。结果共收集589例患儿临床资料进行分析,轻症组324例,重症组265例。BPNN模型和Logistic回归模型的测试集(n=178)预测正确率为82.02%、84.83%;ROC曲线下面积及95%CI分别为0.791(0.749~0.834)和0.625(0.577~0.674)。BPNN模型输出的预测变量中,对分组影响最大的前5位因素为:最高体温、发热持续时间、谷氨酰转肽酶、天冬氨酸氨基转移酶和球蛋白。两模型输出预测变量重要性结果前十位中重合的有3个,分别为:最高体温、发热持续时间和肢体抖动。结论BPNN模型和Logistic回归模型在筛选验证重症手足口病危险因素方面均表现良好,但BPNN模型的综合预测性能更好,BPNN模型筛选出的前五名重症HFMD影响因素为最高体温、发热持续时间、谷氨酰转肽酶、天冬氨酸氨基转移酶和球蛋白。 展开更多
关键词 重症手足口病 反向传播神经网络模型 预测 人工神经网络 LOGISTIC回归模型 机器学习
在线阅读 下载PDF
基于人工神经网络的沿海地区底泥盐度计算模型
12
作者 袁静 王锐 喻国良 《华北水利水电大学学报(自然科学版)》 北大核心 2024年第4期102-108,共7页
底泥盐度与海洋科学、河口研究、环境管理等密切相关,现有的底泥盐度计算公式存在精度不足、适用性有限等问题。为此,开展了271组室内试验和10组户外试验,整合了其他学者的研究数据,以底泥电导率、泥沙浓度、温度和细颗粒表面系数为模... 底泥盐度与海洋科学、河口研究、环境管理等密切相关,现有的底泥盐度计算公式存在精度不足、适用性有限等问题。为此,开展了271组室内试验和10组户外试验,整合了其他学者的研究数据,以底泥电导率、泥沙浓度、温度和细颗粒表面系数为模型输入变量,分别建立了用于计算沿海地区底泥盐度的反向传播人工神经网络(BP-ANN)模型、粒子群优化的反向传播人工神经网络(PSO-BP-ANN)模型、结合遗传算法的反向传播人工神经网络(GA-BP-ANN)模型。与现有的底泥盐度计算公式相比,新建模型的精度更高,可为沿海地区底泥盐度的确定提供更多可供选择的预测方法。 展开更多
关键词 底泥盐度 人工神经网络模型 反向传播 粒子群优化 遗传算法
在线阅读 下载PDF
反向传播人工神经网络结合正交试验优化荷叶降脂方的提取工艺 被引量:1
13
作者 王迪磊 宋乃琪 +6 位作者 杨凯丽 杨麒琳 郭子硕 肖五庆 杨天姿 李鹏跃 杜守颖 《世界中医药》 CAS 2023年第11期1525-1529,共5页
目的:使用反向传播(BP)人工神经网络结合正交试验优化荷叶降脂方中药物的提取工艺,为药物的规范化生产和产业化形成提供可靠的研究基础。方法:采用水回流提取法提取,以荷叶碱的含量为评价指标,以正交试验设计筛选提取工艺,并将正交试验... 目的:使用反向传播(BP)人工神经网络结合正交试验优化荷叶降脂方中药物的提取工艺,为药物的规范化生产和产业化形成提供可靠的研究基础。方法:采用水回流提取法提取,以荷叶碱的含量为评价指标,以正交试验设计筛选提取工艺,并将正交试验层次分析法得到的实验数据作为反向神经网络的输入层,评价指标的综合得分作为网络的输出层,对主要影响因素进行仿真优化,得到最优提取工艺。结果:优化得到的提取工艺条件为12倍量水、提取3次、0.5 h/次。结论:BP人工神经网络结合正交试验方法可用于荷叶降脂方提取工艺的优化,科学合理,稳定可行,符合中药制剂研发的需求。 展开更多
关键词 荷叶降脂方 高脂血症 荷叶碱 提取工艺 正交试验 反向传播人工神经网络
在线阅读 下载PDF
人工神经网络及模拟退火算法应用于原子吸收光谱法同时测定钙、磷 被引量:2
14
作者 陈国松 黄招霞 +1 位作者 唐美华 张之翼 《理化检验(化学分册)》 CAS CSCD 北大核心 2008年第7期597-599,603,共4页
试验发现:原子吸收光谱法(AAS)在442.7 nm波长处测定钙时受到大于0.10 mg·L^(-1)磷共存的干扰,使钙的测定结果偏低,而且此负偏差降低的幅度随磷浓度的增加而增大。试验还发现:当共存磷的量在0.1~6.0mg·L^(-1)之间时,钙测量... 试验发现:原子吸收光谱法(AAS)在442.7 nm波长处测定钙时受到大于0.10 mg·L^(-1)磷共存的干扰,使钙的测定结果偏低,而且此负偏差降低的幅度随磷浓度的增加而增大。试验还发现:当共存磷的量在0.1~6.0mg·L^(-1)之间时,钙测量值的负偏差幅度与磷浓度之间存在明显的相关性。应用反向传播人工神经网络(BP-ANN)及模拟退火两种计算法对上述非线性干扰效应进行了研究,并提出了在单一波长检测的条件下,钙、磷两元素的原子吸收光谱法同时测定,此法应用于循环水中钙、磷的同时测定。两元素的检测范围依次为0.08~10.0 mg·L^(-1)及0.10~6.0mg·L^(-1),测得其回收率分别为100.5%和98.0%。 展开更多
关键词 原子吸收光谱法 反向传播-人工神经网络算法 模拟退火算法
在线阅读 下载PDF
人工神经网络误差反向传播法测定复方苯甲酸涂剂中苯甲酸与水杨酸的含量
15
作者 朱鲁夫 程存归 王森清 《医药导报》 CAS 2005年第1期67-68,共2页
目的 对紫外光谱重叠的复方苯甲酸涂剂进行多组分不经分离的含量测定。方法 采用人工神经网络误差反向传播方法 (BP)对复方苯甲酸涂剂进行含量测定。结果 当网络隐蔽层的节点数为 5 ,以 9个节点输入时 ,苯甲酸与水杨酸的平均回收率... 目的 对紫外光谱重叠的复方苯甲酸涂剂进行多组分不经分离的含量测定。方法 采用人工神经网络误差反向传播方法 (BP)对复方苯甲酸涂剂进行含量测定。结果 当网络隐蔽层的节点数为 5 ,以 9个节点输入时 ,苯甲酸与水杨酸的平均回收率分别为 10 5 .0 %和 10 2 .0 % ,RSD分别为 1 5 %和 2 0 %。结论 该方法简便、快速 ,测定结果准确。 展开更多
关键词 人工神经网络误差反向传播 紫外光谱 苯甲酸涂剂 复方
在线阅读 下载PDF
关于系统级故障诊断的烟花-反向传播神经网络算法 被引量:5
16
作者 归伟夏 陆倩 苏美力 《电子与信息学报》 EI CSCD 北大核心 2020年第5期1102-1109,共8页
为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略... 为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略、协作算子以及最优算子,设计新的适应度函数,优化变异算子、映射规则和选择策略。然后,利用烟花算法全局搜索能力和局部搜索能力的自调节机制,优化BP神经网络中的权值和阈值的寻优过程。仿真实验结果表明,该文算法相较于其他算法不仅有效地降低了迭代次数和训练时间,而且还进一步提高了诊断精度。 展开更多
关键词 系统级故障诊断 烟花算法 反向传播神经网络 PMC模型 烟花-反向传播神经网络算法
在线阅读 下载PDF
利用粒子群算法优化反向传播人工神经网络模型预测熏肠中4种多环芳烃含量
17
作者 邢巍 刘兴运 +6 位作者 许朝阳 惠腾 王石宇 蔡克周 周辉 陈从贵 徐宝才 《肉类研究》 2022年第1期34-40,共7页
构建基于粒子群优化(particle swarm optimization,PSO)算法的反向传播人工神经网络(back propagation artificial neural network,BP-ANN)预测模型,对熏肠中4种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)(苯并(a)芘、苯并(a)蒽... 构建基于粒子群优化(particle swarm optimization,PSO)算法的反向传播人工神经网络(back propagation artificial neural network,BP-ANN)预测模型,对熏肠中4种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)(苯并(a)芘、苯并(a)蒽、苯并(b)荧蒽、䓛)含量进行预测。以烟熏温度、烟熏时间、肥瘦比和熏肠色泽(红绿值和黄蓝值)作为BP-ANN模型的输入层参数,熏肠的4种PAHs含量作为输出层参数,通过PSO-BP-ANN模型来优化初始权重和阈值,以获得最佳参数。结果表明:构建的PSO-BP-ANN熏肠PAHs含量预测模型均方误差为0.018,模型的训练、验证、测试和全局数据集的相关系数(R^(2))分别为0.951、0.929、0.933和0.940,均优于BP-ANN模型,使用PSO-BP-ANN模型具有更好的准确性和鲁棒性。 展开更多
关键词 熏肠 反向传播人工神经网络 优化设计 多环芳烃 灵敏度分析
在线阅读 下载PDF
基于反向传播人工神经网络对SiC氧化反应行为的预测研究
18
作者 赵春阳 王恩会 +3 位作者 方志 郭春雨 段兴骏 侯新梅 《硅酸盐通报》 CAS 北大核心 2021年第10期3213-3218,共6页
以SiC为代表的非氧化物耐火原料作为高温结构材料重要组分,被广泛应用于冶金高温行业。在实际应用过程中,SiC的氧化行为加速了对应耐火材料的高温性能失效,导致其服役寿命大大缩短。因此明晰非氧化物耐火原料在高温环境下的氧化行为尤... 以SiC为代表的非氧化物耐火原料作为高温结构材料重要组分,被广泛应用于冶金高温行业。在实际应用过程中,SiC的氧化行为加速了对应耐火材料的高温性能失效,导致其服役寿命大大缩短。因此明晰非氧化物耐火原料在高温环境下的氧化行为尤为重要,利用动力学模型分析氧化行为是目前最常用的手段。但动力学模型的建立往往需要大量的数据处理工作,且很难同时满足描述准确性高和模型参数简单两个条件。随着人工智能与大数据技术在材料领域的应用探索,反向传播人工神经网络(BP-ANN)有望在此方面取得突破。本文以典型非氧化物耐火原料SiC为例,通过建立神经网络,训练、预测SiC的氧化行为,预测结果与实验数据的相对误差均小于3%,用预测数据回归计算的反应活化能和反应速率常数与实验数据计算结果的相对误差低于4%,表明BP-ANN在研究非氧化物耐火原料的氧化行为方面具有巨大应用前景。 展开更多
关键词 耐火材料 高温结构材料 非氧化物材料 氧化 SIC 反向传播人工神经网络 模型优化 反应活化能
在线阅读 下载PDF
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型 被引量:8
19
作者 蒋华伟 郭陶 杨震 《科学技术与工程》 北大核心 2021年第21期8951-8956,共6页
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化... 在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型。采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型。为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性。 展开更多
关键词 小麦储藏品质 多指标分析 粒子群算法 改进粒子群优化-反向传播神经网络(IPSO-BPNN) 预测模型
在线阅读 下载PDF
人工神经网络分类鉴别苦丁茶红外光谱 被引量:18
20
作者 庞涛涛 姚建斌 杜黎明 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2007年第7期1336-1339,共4页
为了分类鉴别苦丁茶,采用竞争神经网络(CNN)和反向传播人工神经网络(BP网络)两种模式的人工神经网络(ANN)分别分析了各种苦丁茶的红外谱图。作者采用25个样本作训练集,11个样本作检验集,用两种网络进行了训练。结果表明,CNN网络和BP网... 为了分类鉴别苦丁茶,采用竞争神经网络(CNN)和反向传播人工神经网络(BP网络)两种模式的人工神经网络(ANN)分别分析了各种苦丁茶的红外谱图。作者采用25个样本作训练集,11个样本作检验集,用两种网络进行了训练。结果表明,CNN网络和BP网络均能够有效地实现苦丁茶产地的鉴别,但CNN网络能够进一步地区分苦丁茶的级别。实验表明,CNN速度快,预测结果准确,可望用竞争神经网络(CNN)和红外光谱法结合分类鉴别苦丁茶。 展开更多
关键词 苦丁茶 人工神经网络 竞争神经网络 反向传播人工神经网络 红外光谱
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部