期刊文献+
共找到661篇文章
< 1 2 34 >
每页显示 20 50 100
预测输尿管软镜碎石术后并发尿源性脓毒症的反向传播神经网络模型构建
1
作者 陈文炜 何彦丰 +5 位作者 卢凯鑫 刘昌毅 江涛 张华 高锐 薛学义 《浙江大学学报(医学版)》 北大核心 2025年第1期99-107,I0032-I0034,共12页
目的:构建输尿管软镜碎石术(FURL)后并发尿源性脓毒症的反向传播神经网络预测模型。方法:纳入428例接受FURL的肾结石患者,根据术后是否并发尿源性脓毒症分为脓毒症组(42例)和对照组(386例)。采用logistic回归分析确定FURL后并发尿源性... 目的:构建输尿管软镜碎石术(FURL)后并发尿源性脓毒症的反向传播神经网络预测模型。方法:纳入428例接受FURL的肾结石患者,根据术后是否并发尿源性脓毒症分为脓毒症组(42例)和对照组(386例)。采用logistic回归分析确定FURL后并发尿源性脓毒症的影响因素及其交互作用。同时建立logistic回归模型和神经网络模型进行预测,通过受试者工作特征曲线评估两种模型的预测效能。结果:单因素分析显示,结石手术史、性别、尿培养阳性、结石直径、糖尿病、手术时间、白细胞、血小板、C反应蛋白(CRP)及肝素结合蛋白(HBP)水平与FURL后并发尿源性脓毒症显著相关(均P<0.05)。多因素分析表明,尿培养阳性、CRP及HBP水平是FURL后并发尿源性脓毒症的独立危险因素(均P<0.05)。交互作用分析显示,CRP与HBP对FURL后并发尿源性脓毒症的影响在相加模型(RERI=8.453,95%CI:2.645~16.282;AP=0.696,95%CI:0.131~1.273;S=3.369,95%CI:1.176~7.632)和相乘模型(OR=1.754,95%CI:1.218~3.650)中存在交互作用;CRP与尿培养对FURL后并发尿源性脓毒症的影响在相乘模型(OR=2.449,95%CI:1.525~3.825)中存在交互作用。预测模型比较显示,反向传播神经网络模型较logistic回归模型具有更优的预测效能。结论:CRP和HBP水平是FURL后并发尿源性脓毒症的独立危险因素,基于CRP、HBP等因素构建的反向传播神经网络模型较logistic回归模型具有更高的预测准确性。 展开更多
关键词 肝素结合蛋白 C反应蛋白 输尿管软镜碎石术 尿源性脓毒症 预测 LOGISTIC回归模型 反向传播神经网络模型
在线阅读 下载PDF
基于连续小波变换和反向传播神经网络的水稻SPAD值估测
2
作者 胡文瑞 高倩文 +1 位作者 阳会兵 高志强 《山东农业科学》 北大核心 2025年第4期154-162,共9页
为构建水稻叶片SPAD值的高光谱精确估算模型,本试验以“晶两优华占”为供试材料,设置3个施肥处理,于全生育期内连续定期测定高光谱反射率与SPAD值数据,利用植被指数和连续小波变换(CWT)提取光谱的敏感信息,再利用传统的线性和非线性拟... 为构建水稻叶片SPAD值的高光谱精确估算模型,本试验以“晶两优华占”为供试材料,设置3个施肥处理,于全生育期内连续定期测定高光谱反射率与SPAD值数据,利用植被指数和连续小波变换(CWT)提取光谱的敏感信息,再利用传统的线性和非线性拟合以及反向传播神经网络(BPNN)算法建立水稻叶片SPAD值的估测模型,并利用决定系数(R2)、均方根误差(RMSE)和相对分析误差(RPD)对模型的估测效果进行比较分析。结果表明:基于传统方法(线性函数、对数函数、指数函数、二次函数拟合),以9个常用植被指数为自变量构建的SPAD值反演单变量模型精度较低(RPD<1.4);选用6种母小波函数进行CWT,可以有效提高叶片高光谱反射率与SPAD值之间的相关性,以各母小波函数的最佳小波系数为自变量构建单变量模型,精度明显提高,可以达到SPAD值的粗略评估水平(RPD在1.523~1.581之间)。基于BPNN算法构建的水稻叶片SPAD值估测模型精度较单变量模型明显提高,RPD均在1.823~2.342,其中以bior3.3、gaus4作为母小波函数构建的BPNN模型具有良好的预测能力,RPD分别为2.342、2.178,但以gaus4作为母小波函数构建的BPNN模型存在过拟合现象。综合来看,用bior3.3作为母小波函数分解得到的前10个最佳小波系数构建的BPNN模型精度最高,R2、RMSE分别为0.818、1.441,可以对水稻叶片SPAD值进行良好的预测。本研究证明了CWT可以有效提取水稻叶片光谱特征中的敏感信息,建立的bior3.3-BPNN模型可用于其SPAD值的监测,这可为后续水稻全生育期叶片叶绿素含量的快速无损监测提供参考,并为水稻生长发育动态的实时监测提供技术支持。 展开更多
关键词 水稻 SPAD值 高光谱 植被指数 连续小波变换 反向传播神经网络
在线阅读 下载PDF
改进鲸鱼算法构建反向传播神经网络粮食产量预测模型及效果分析
3
作者 赵晶晶 陈岩 《科学技术与工程》 北大核心 2025年第7期2748-2759,共12页
为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线... 为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线性惯性权重和最优邻域扰动策略改进鲸鱼优化算法,再将其最优解赋值给BP神经网络的权值和阈值,最终提高IWOA-BP的收敛速度和收敛精度。选取全国近45年粮食总产量和7种影响因素(有效灌溉面积、化肥施用量、农村用电量、农业机械总动力、粮食作物播种面积、受灾面积和农村人均消费支出)作为数据集,构建基于改进鲸鱼算法的反向传播神经网络粮食产量预测模型。多次实验表明,IWOA-BP模型在测试集上的表现均优于其他预测模型,包括长短期记忆网络(long short-term memory network,LSTM)预测模型、极限学习机(extreme learning machine,ELM)预测模型、基于鲸鱼优化算法的BP神经网络(WOA-BP)预测模型以及基于粒子群算法的BP神经网络(PSO-BP)预测模型。IWOA-BP模型和ELM模型相比,前者的均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolute percentage error,MAPE)分别降低了77.12%、88.18%;和LSTM模型相比,前者的RMSE、MAPE分别降低了69.11%、47.36%;和WOA-BP模型相比,前者的平均绝对误差(mean absolute error,MAE)、RMSE和MAPE分别降低了43.78%、43.22%、45.96%。和PSO-BP模型相比,前者的MAE、RMSE、MAPE分别降低了89.67%、90.61%、90.82%。因此IWOA-BP预测模型的决定系数更高、预测误差更小且收敛速度更快,可有效地预测粮食产量,对于农业部门和相关政策制定者来说具有重要的技术参考价值。 展开更多
关键词 粮食产量 反向传播神经网络 鲸鱼优化算法 非线性惯性权重 随机扰动策略
在线阅读 下载PDF
基于反向传播神经网络分析的田菁胶添加对萨拉米发酵香肠品质的影响
4
作者 卢慧 宋艾颖 +4 位作者 凌峰 蔡玉玲 黄启亮 刘云国 康大成 《食品科学》 北大核心 2025年第13期54-62,共9页
旨在探讨基于反向传播神经网络(backpropagation-artificial?neural?network,BP-ANN)分析田菁胶添加对萨拉米发酵香肠品质的影响。本研究设计4个处理组:空白对照组(CK)、接种复合发酵剂处理组(CG)、添加田菁胶处理组(SE)和添加田菁胶与... 旨在探讨基于反向传播神经网络(backpropagation-artificial?neural?network,BP-ANN)分析田菁胶添加对萨拉米发酵香肠品质的影响。本研究设计4个处理组:空白对照组(CK)、接种复合发酵剂处理组(CG)、添加田菁胶处理组(SE)和添加田菁胶与接种复合发酵剂处理组(SE-CG)。通过测定发酵香肠的pH值、水分活度(aw)、色差、质构特性、感官评定和电子鼻等指标,系统评估田菁胶添加对萨拉米发酵香肠品质的影响。研究表明,田菁胶与发酵剂共同添加时可快速降低产品pH值和aw值,有利于萨拉米香肠的最终品质的形成;与CK和CG组相比,添加田菁胶可显著改善SE-CG组的a^(*)值(4.64±0.38)和硬度((60.95±1.48)N)。此外,电子鼻分析表明,田菁胶结合发酵剂可显著增加产品中含硫化合物、醇类以及芳香族化合物的浓度。BP-ANN模型被用于对香肠品质进行分类和预测,结果显示模型的准确率达到96%,具有较高的分类精度和预测能力。此外,通过沙普利加和解释方法用于BP-ANN模型解释,揭示了不同品质指标对模型预测的重要性,发现其中电子鼻传感器S12信号、硬度和咀嚼性等特征对模型预测贡献较大。 展开更多
关键词 萨拉米发酵香肠 田菁胶 反向传播神经网络 品质分析 沙普利加和解释方法
在线阅读 下载PDF
反向传播神经网络结合紫外-近红外融合光谱对“互助”青稞酒的判别研究
5
作者 赵玉霞 张明锦 +2 位作者 王茹 张世芝 殷博 《光谱学与光谱分析》 北大核心 2025年第5期1290-1299,共10页
“互助”青稞酒作为保护地理标志产品,对其准确评价分类具有重要意义。紫外光谱(UV)和近红外光谱(NIR)技术具备快速、准确、无损检测、无需样品预处理等优势,在食品等领域已广泛应用。本研究采用UV、NIR及紫外-近红外中级数据融合光谱(U... “互助”青稞酒作为保护地理标志产品,对其准确评价分类具有重要意义。紫外光谱(UV)和近红外光谱(NIR)技术具备快速、准确、无损检测、无需样品预处理等优势,在食品等领域已广泛应用。本研究采用UV、NIR及紫外-近红外中级数据融合光谱(UV-NIR)结合反向传播神经网络(BPNN)法建立了快速、无损、高效的“互助”青稞酒判别分类模型。由于光谱特征峰叠加干扰,未经优化的光谱受到噪声和基线漂移等影响,采用标准正态变量变换(SNV)、Savitzky-Golay平滑(SG)、一阶导数(1D)和二阶导数(2D)4种预处理方法对光谱进行去噪处理。相对单一光谱,融合光谱能够互补多元化学信息,提高分类模型性能,通过竞争自适应重加权采样(CARS)、连续投影算法(SPA)、主成分分析(PCA)、变量投影重要性分析(VIP)和变量组合集群分析(VCPA)5种变量筛选方法选择特征变量,达到优化模型性能及融合两种光谱有效信息。选择最佳方法建立单一光谱和融合光谱的BPNN模型。结果表明,UV光谱经SNV预处理以SPA选择30个特征变量建立的分类模型识别效果最好,分类准确率为100%,MSE值、R_(P)^(2)、R(Train)、R(Validation)、R(Test)和R(All)分别为0.0180、1、0.9283、0.9587、0.9130、0.9297;NIR和UV-NIR经SG预处理后以PCA分别选择84和106个特征变量建立的分类模型识别效果最好,NIR光谱分类准确率为100%,MSE值、R_(P)^(2)、R(Train)、R(Validation)、R(Test)和R(All)分别为0、1.000、1.000、1.000、1.000、1.000;UV-NIR光谱分类准确率为100%、MSE值、R_(P)^(2)、R(Train)、R(Validation)、R(Test)和R(All)分别为0.0057、1.000、1.000、0.9871、0.9913、0.9964;与单一光谱建模相比,融合光谱可明显提高分类模型的预测能力和稳健性,实现“互助”青稞酒的快速、无损分析。 展开更多
关键词 “互助”青稞酒 紫外光谱 近红外光谱 光谱融合 变量筛选 反向传播神经网络(BPNN)模型
在线阅读 下载PDF
近红外光谱技术结合改良偏最小二乘法和反向传播神经网络预测葵花籽皮营养成分含量 被引量:3
6
作者 李欣荣 李飞 +10 位作者 翁秀秀 刘保仓 邓晓裕 王新基 史艳丽 郭涛 王力 李钰 李开栋 李建栋 田多湖 《动物营养学报》 CAS CSCD 北大核心 2024年第11期7335-7345,共11页
本研究旨在利用近红外光谱(NIRS)技术结合不同化学计量学方法建立葵花籽皮营养成分含量的预测模型。采集101份葵花籽皮样品,测定水分、粗蛋白质(CP)、有机物(OM)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、酸性洗涤木质素(ADL)、粗灰分(A... 本研究旨在利用近红外光谱(NIRS)技术结合不同化学计量学方法建立葵花籽皮营养成分含量的预测模型。采集101份葵花籽皮样品,测定水分、粗蛋白质(CP)、有机物(OM)、中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、酸性洗涤木质素(ADL)、粗灰分(Ash)、钾(K)、钙(Ca)、磷(P)、镁(Mg)、铁(Fe)、锰(Mn)、锌(Zn)和铜(Cu)含量。通过主成分分析(PCA)剔除异常值后,利用KS算法将剩余样品分为定标集和验证集,利用NIRS技术结合改良偏最小二乘法(MPLS)和反向传播神经网络(BPNN)分别建立葵花籽皮营养成分含量预测模型。结果表明:1)葵花籽皮中水分、NDF、ADF、Ash、Mg、Fe和Mn含量的预测决定系数(RSQ)为0.88~0.99,验证相对分析误差(RPD)为2.82~8.36,利用MPLS和BPNN模型定标结果较好,且预测准确性较好,能够用于实际测量。2)葵花籽皮中K和Zn含量的MPLS模型的PRD分别为2.75和2.44,而BPNN模型的PRD分别为1.76和1.69,K和Zn含量可利用MPLS模型进行实际预测。3)葵花籽皮中CP、Ca和P含量的BPNN模型的RSQ分别为0.9、0.89和0.83,而MPLS模型的RSQ分别为0.75、0.62和0.71,CP、Ca和P含量可通过BPNN模型进行实际预测。4)葵花籽皮中ADL和Cu含量的MPLS和BPNN模型的RSQ为0.30~0.68,RPD为1.03~1.79,预测结果不可用于实际预测。综上所述,利用NIRS技术结合MPLS和BPNN建立的预测模型能够准确预测葵花籽皮中水分、CP、NDF、ADF、Ash、K、Ca、P、Mg、Fe、Mn和Zn含量。 展开更多
关键词 葵花籽皮 近红外光谱技术 改良偏最小二乘法 反向传播神经网络 预测模型
在线阅读 下载PDF
基于反向传播神经网络PID的高功率微波炉温度控制 被引量:9
7
作者 王威 李少甫 +2 位作者 吴昊 蒋成 唐颖颖 《强激光与粒子束》 CAS CSCD 北大核心 2024年第1期55-61,共7页
针对现有10 kW高功率工业微波炉,采用继电器作为控制执行器,在使用传统控制方法加热时,温度存在较大超调和明显振荡,系统温度稳定性较低,为解决上述问题将反向传播神经网络PID(BPNNPID)控制引入到该装置微波加热温度控制中,并以自来水... 针对现有10 kW高功率工业微波炉,采用继电器作为控制执行器,在使用传统控制方法加热时,温度存在较大超调和明显振荡,系统温度稳定性较低,为解决上述问题将反向传播神经网络PID(BPNNPID)控制引入到该装置微波加热温度控制中,并以自来水为加热对象进行仿真对比与实验验证。首先,利用现有输入输出实验数据,建立工业微波炉温度控制模型;其次,运用MATLAB/SIMULINK搭建高功率工业微波炉温度控制系统并进行仿真对比实验;最后,实验验证BPNNPID控制方法在加热5 kg自来水时工业微波炉的温度控制性能,实验结果表明,较常规PID、模糊PID控制,该方法在微波加热过程中对媒质温度控制超调更小且未发生明显温度振荡,有效改善了高功率工业微波炉工作时的系统温度稳定性,有助于提高产品质量和安全性能。 展开更多
关键词 高功率 微波加热 反向传播神经网络 PID 温度控制
在线阅读 下载PDF
基于遗传算法-反向传播神经网络优化高压-超声-酶解法提取羊皮胶原蛋白工艺 被引量:1
8
作者 朱明 张德权 +5 位作者 李少博 陈丽 侯成立 程成鹏 于江颖 关文强 《肉类研究》 北大核心 2024年第6期42-50,共9页
采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最... 采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最佳提取参数为高压时间23 min、超声时间22 min、酶添加量3.2%、酶解时间222 min,羊皮胶原蛋白提取率达到(80.5±1.6)%,较传统的木瓜蛋白酶法提高40%;紫外-可见吸收光谱和傅里叶变换红外光谱结果显示,此条件下提取的羊皮胶原蛋白结构完整,高压-超声-酶解法对胶原蛋白的破坏较小。 展开更多
关键词 羊皮 羊皮胶原蛋白 高压-超声-酶解法 遗传算法-反向传播神经网络 响应面法
在线阅读 下载PDF
构建并验证反向传播神经网络模型对筛选重症手足口病影响因素的性能 被引量:1
9
作者 陈琳 冯慧芬 +1 位作者 屈质 马驰 《安徽医科大学学报》 北大核心 2024年第12期2222-2229,共8页
目的通过构建反向传播神经网络(BPNN)模型,筛选重症手足口病(HFMD)临床早期预警指标,探讨神经网络技术在临床中的应用价值。方法收集河南省新乡医学院第一附属医院感染科及儿科2019年1月至2023年1月收治的HFMD患儿临床资料,使用SPSS Mod... 目的通过构建反向传播神经网络(BPNN)模型,筛选重症手足口病(HFMD)临床早期预警指标,探讨神经网络技术在临床中的应用价值。方法收集河南省新乡医学院第一附属医院感染科及儿科2019年1月至2023年1月收治的HFMD患儿临床资料,使用SPSS Modeler18.0将数据分为70%的训练样本和30%的测试样本,并构建BPNN模型和Logistic模型,对比评估模型预测准确性及筛选效果。结果共收集589例患儿临床资料进行分析,轻症组324例,重症组265例。BPNN模型和Logistic回归模型的测试集(n=178)预测正确率为82.02%、84.83%;ROC曲线下面积及95%CI分别为0.791(0.749~0.834)和0.625(0.577~0.674)。BPNN模型输出的预测变量中,对分组影响最大的前5位因素为:最高体温、发热持续时间、谷氨酰转肽酶、天冬氨酸氨基转移酶和球蛋白。两模型输出预测变量重要性结果前十位中重合的有3个,分别为:最高体温、发热持续时间和肢体抖动。结论BPNN模型和Logistic回归模型在筛选验证重症手足口病危险因素方面均表现良好,但BPNN模型的综合预测性能更好,BPNN模型筛选出的前五名重症HFMD影响因素为最高体温、发热持续时间、谷氨酰转肽酶、天冬氨酸氨基转移酶和球蛋白。 展开更多
关键词 重症手足口病 反向传播神经网络模型 预测 人工神经网络 LOGISTIC回归模型 机器学习
在线阅读 下载PDF
基于反向传播神经网络的分航段船舶油耗预测模型 被引量:1
10
作者 马琳 杨平 《中国航海》 CSCD 北大核心 2024年第4期168-174,共7页
对船舶主机油耗进行预测是船舶进行能效优化的基础和前提,对于不同航行区域下的船舶油耗预测结果进行分析,更能提升油耗模型的预测性能。根据航行区域等因素选取5个航段作为试验对象并建立油耗模型,对主机油耗的影响因素进行分析。选择... 对船舶主机油耗进行预测是船舶进行能效优化的基础和前提,对于不同航行区域下的船舶油耗预测结果进行分析,更能提升油耗模型的预测性能。根据航行区域等因素选取5个航段作为试验对象并建立油耗模型,对主机油耗的影响因素进行分析。选择主机转速、风速、风向等作为模型的输入变量,选择主机瞬时油耗和航速作为输出变量,利用反向传播神经网络对油耗进行预测。试验结果表明各个航段油耗和航速的预测结果误差分别不超过2.5%和1.8%,风力变化较为平稳的航段2和航段3的预测误差低于其他航段;模型的预测精度会受到风力变化程度的影响,但在不同航段的预测性能均可满足后续进行能效优化的要求。 展开更多
关键词 主机油耗预测 航速预测 反向传播神经网络(BPNN) 评价指标 航段划分
在线阅读 下载PDF
基于反向传播神经网络的卤水蒸发速率预测模型
11
作者 李志伟 付振海 +1 位作者 张志宏 李生廷 《无机盐工业》 CAS CSCD 北大核心 2024年第1期53-58,共6页
卤水的蒸发速率是盐田生产管理中的一个重要技术参数,通过搭建室外卤水蒸发实验装置,分析了辐照强度、风速、环境温度、相对湿度、卤水温度、卤水浓度与卤水蒸发速率的关系。利用反向传播(BP)神经网络,训练构建了卤水蒸发速率预测模型,... 卤水的蒸发速率是盐田生产管理中的一个重要技术参数,通过搭建室外卤水蒸发实验装置,分析了辐照强度、风速、环境温度、相对湿度、卤水温度、卤水浓度与卤水蒸发速率的关系。利用反向传播(BP)神经网络,训练构建了卤水蒸发速率预测模型,并与传统的应用回归方法构建的模型进行比较。结果表明,BP神经网络模型和非线性回归模型的决定系数R2分别为0.902和0.884,预测平均相对误差分别为15.723%和18.943%,BP神经网络模型的拟合效果和预测能力均优于非线性回归模型。说明应用BP神经网络构建卤水蒸发速率预测模型是可行的,能够实现蒸发速率的快速估测。 展开更多
关键词 卤水蒸发速率 定量分析 非线性回归 反向传播神经网络
在线阅读 下载PDF
大容积电烤箱内传热过程的反向传播神经网络控制算法
12
作者 姚青 唐巍峰 +4 位作者 郑鑫 王锐 梁文龙 刘玉贤 褚雯霄 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期73-83,共11页
大容积电烤箱内存在严重加热不均匀问题,限制其在商业和家用领域的广泛应用,传统比例-积分-微分(PID)控制算法存在弛豫时间长、温控精度差等问题,导致被加热目标无法维持在最佳烹饪热环境。通过自编程构建了一种反向传播神经网络(BPNN)... 大容积电烤箱内存在严重加热不均匀问题,限制其在商业和家用领域的广泛应用,传统比例-积分-微分(PID)控制算法存在弛豫时间长、温控精度差等问题,导致被加热目标无法维持在最佳烹饪热环境。通过自编程构建了一种反向传播神经网络(BPNN)控制策略,以改善大容积电烤箱的加热速率、温控精度及热均匀性为目标,通过局部速度、温度分布与美拉德反应可视化实验测试,探究了风扇转速、对流与辐射加热功率和排气流量等因素的影响。实验结果表明:在提升算法鲁棒性后,BPNN算法对烤箱内温度预测误差显著降低;相比PID控制方法,采用BPNN算法的被加热目标过热度最多降至6℃,温控精度显著提高;被加热目标表面温度的相对极差从54%降至36%,速度相对极差从71.4%下降至39%,均匀性显著增强;电烤箱的加热弛豫时间从230 s降至100 s。BPNN算法能够实现大容积电烤箱更精确、更快速、更均匀的温度控制。 展开更多
关键词 电烤箱 反向传播神经网络 对流与辐射 热均匀性 弛豫时间
在线阅读 下载PDF
关于系统级故障诊断的烟花-反向传播神经网络算法 被引量:5
13
作者 归伟夏 陆倩 苏美力 《电子与信息学报》 EI CSCD 北大核心 2020年第5期1102-1109,共8页
为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略... 为了更快速且精确地诊断出大规模多处理器系统中的故障单元,该文首次将改进的烟花算法和反向传播(BP)神经网络相结合,提出一种新的系统级故障诊断算法-烟花-反向传播神经网络故障诊断算法(FWA-BPFD)。首先,在烟花算法中引入双种群策略、协作算子以及最优算子,设计新的适应度函数,优化变异算子、映射规则和选择策略。然后,利用烟花算法全局搜索能力和局部搜索能力的自调节机制,优化BP神经网络中的权值和阈值的寻优过程。仿真实验结果表明,该文算法相较于其他算法不仅有效地降低了迭代次数和训练时间,而且还进一步提高了诊断精度。 展开更多
关键词 系统级故障诊断 烟花算法 反向传播神经网络 PMC模型 烟花-反向传播神经网络算法
在线阅读 下载PDF
复杂装备轴承多重故障的线性判别分析与反向传播神经网络协作诊断方法 被引量:18
14
作者 黄大荣 陈长沙 +2 位作者 孙国玺 赵玲 米波 《兵工学报》 EI CAS CSCD 北大核心 2017年第8期1649-1657,共9页
由于复杂装备运行工作环境恶劣,导致其轴承多重故障诊断的准确率不高,为此提出一种基于线性判别分析(LDA)与反向传播(BP)神经网络协作下复杂装备轴承数据驱动的多重故障诊断方法。将无量纲指标作为轴承多重故障数据的反映指标,利用LDA... 由于复杂装备运行工作环境恶劣,导致其轴承多重故障诊断的准确率不高,为此提出一种基于线性判别分析(LDA)与反向传播(BP)神经网络协作下复杂装备轴承数据驱动的多重故障诊断方法。将无量纲指标作为轴承多重故障数据的反映指标,利用LDA对轴承多重故障的无量纲指标数据进行线性映射降维处理;通过拉格朗日极值法获得最佳投影向量,沿着该方向将轴承多重故障数据投影到类别最易区分的方向;将经投影处理后的样本作为BP神经网络的输入样本,通过训练测试网络,实现轴承多重故障的预测分类。对某型装备大型旋转机械机组进行仿真实验,验证了所提方法能够有效对轴承多重故障进行降维映射,并且能较好地实现多重故障分类诊断,具有良好的有效性和实用性。 展开更多
关键词 机械学 轴承多重故障诊断 拉格朗日极值法 线性判别分析 反向传播神经网络
在线阅读 下载PDF
基于反向传播神经网络的SVM技术在电压型变流器中的应用研究 被引量:13
15
作者 李建林 李玉玲 +1 位作者 李淳 张仲超 《中国电机工程学报》 EI CSCD 北大核心 2005年第6期71-74,共4页
在分析三相电压型变流器空间矢量调制(SVM)技术基本原理的基础上,提出了一种基于反向传播神经网络结构的 SVM 技术(CPN-SVM)的实现方法。该方法采用CPN 竞争层来计算 SVM 中各个矢量的具体作用时间,避免了计算正弦函数这一非线性运算,... 在分析三相电压型变流器空间矢量调制(SVM)技术基本原理的基础上,提出了一种基于反向传播神经网络结构的 SVM 技术(CPN-SVM)的实现方法。该方法采用CPN 竞争层来计算 SVM 中各个矢量的具体作用时间,避免了计算正弦函数这一非线性运算,缩短了计算时间,采样周期的可进一步缩短。仿真和实验表明:CPN-SVM 除了具备 SVM 的固有优点外,还有下述几个显著优点:①大大降低了整个控制系统的软硬件成本,提高了对开关瞬态位置判断的准确性;②随着采用周期的缩短,最大开关频率相应增大,从而提高了整个系统的传输带宽③避免了由于计算误差给 SVM 波形中所带来的附带谐波。 展开更多
关键词 SVM技术 反向传播神经网络 变流器 应用 空间矢量调制 神经网络结构 三相电压型 基本原理 作用时间 线性运算 正弦函数 计算时间 采样周期 控制系统 开关频率 计算误差 传输带宽 CPN 缩短 软硬件 准确性 仿真
在线阅读 下载PDF
基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型 被引量:17
16
作者 张玲 王玲 吴桐 《计算机应用》 CSCD 北大核心 2014年第3期775-779,共5页
针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传... 针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传统BP算法收敛速度慢及对网络初始值敏感的问题。同时,针对标准PSO算法易出现早熟收敛、局部寻优能力弱等缺点,提出了相应改进策略,进一步提高了PSO优化BP神经网络的能力。实验结果表明:与传统BP模型和标准PSO-BP模型相比,基于改进的PSO-BP算法的热舒适度预测模型具有更高的预测精度和更快的收敛速度。 展开更多
关键词 热舒适度 预测 反向传播神经网络 粒子群优化算法 模型
在线阅读 下载PDF
适用于海量负荷数据分类的高性能反向传播神经网络算法 被引量:40
17
作者 刘洋 刘洋1 许立雄 《电力系统自动化》 EI CSCD 北大核心 2018年第21期96-103,共8页
负荷分类对于指导电网发用电规划与保证电网可靠运行具有重要意义。面向负荷数据海量化与复杂化趋势,传统负荷分类方法已无法满足用电大数据分析要求。首先,针对用户侧数据体量大、类型多、速度快等特点,在Spark平台上将反向传播神经网... 负荷分类对于指导电网发用电规划与保证电网可靠运行具有重要意义。面向负荷数据海量化与复杂化趋势,传统负荷分类方法已无法满足用电大数据分析要求。首先,针对用户侧数据体量大、类型多、速度快等特点,在Spark平台上将反向传播神经网络(BPNN)算法并行化,实现对海量负荷数据的高效分类。然后,通过对训练样本抽样分块以降低各网络学习时间,针对分布式后BPNN基分类器由于学习样本缺失潜在的准确度下降问题,采用集成学习予以改善。并通过BPNN学习不同训练样本块构建差异化基分类器,对基分类结果多数投票得到最终分类结果。另外,提供了一种基于K-means和K-medoids聚类的负荷数据训练样本选取方法。算例表明所提方法既能对负荷曲线有效分类,又能大幅提高海量数据的处理效率。 展开更多
关键词 负荷分类 Spark平台 反向传播神经网络 集成学习 聚类算法
在线阅读 下载PDF
基于反向传播神经网络的发电机进相能力建模研究 被引量:10
18
作者 王成亮 王宏华 徐钢 《电网技术》 EI CSCD 北大核心 2011年第11期136-140,共5页
提出一种基于反向传播神经网络(back propagationneural network,BPNN)的发电机进相能力建模新方法。该BPNN含2个隐层和1个输出层,以发电机有功和无功功率为输入,以发电机功角、电网电压为输出。以典型工况下的发电机进相运行试验结果... 提出一种基于反向传播神经网络(back propagationneural network,BPNN)的发电机进相能力建模新方法。该BPNN含2个隐层和1个输出层,以发电机有功和无功功率为输入,以发电机功角、电网电压为输出。以典型工况下的发电机进相运行试验结果作为训练样本和测试样本,建立了某600 MW发电机进相能力BPNN模型,从收敛精度最优出发,优化设计了模型的隐层数、神经元数、传递函数。建模实例表明,提出的建模方法精度高、泛化能力强,能有效克服传统分析方法的局限性,有推广应用价值。 展开更多
关键词 反向传播神经网络 发电机进相 泛化
在线阅读 下载PDF
应用遗传算法-主成分分析-反向传播神经网络的近红外光谱识别树种效果 被引量:6
19
作者 冯国红 朱玉杰 +1 位作者 徐华东 蒋天宁 《东北林业大学学报》 CAS CSCD 北大核心 2020年第6期56-60,共5页
以风车木(Conbretum imberbe)和非洲小叶紫檀(Pterocarpus tinctorius Welw)为研究对象,应用LabSpec光谱仪采集光谱样本进行主成分分析(PCA),并运用遗传算法(GA)对主成分进行寻优,分别以未经GA寻优的主成分和经GA寻优的主成分作为反向传... 以风车木(Conbretum imberbe)和非洲小叶紫檀(Pterocarpus tinctorius Welw)为研究对象,应用LabSpec光谱仪采集光谱样本进行主成分分析(PCA),并运用遗传算法(GA)对主成分进行寻优,分别以未经GA寻优的主成分和经GA寻优的主成分作为反向传播(BP)神经网络输入量,测试了BP神经网络识别两种树种的效果。结果表明:寻优前,获得高识别率的主成分区间较窄,仅有5种情况识别效果理想,此种情况不利于主成分数的恰当选择;寻优后,获得高识别率的主成分区间较宽,从前6到前17有12种情况可供选择,此种情况更利于主成分的合理选择;寻优后的识别率比寻优前高,且稳定性较好。利用近红外光谱,依据GA-PCA-BP神经网络方法识别树种是一种理想的方法。 展开更多
关键词 树种识别 近红外光谱 遗传算法 主成分分析 反向传播神经网络
在线阅读 下载PDF
基于反向传播神经网络的变型设计变异点快速定位 被引量:3
20
作者 赵秀燕 赵婷婷 +2 位作者 张强 陈微微 魏小鹏 《计算机集成制造系统》 EI CSCD 北大核心 2009年第8期1463-1467,1540,共6页
为了对产品进行有效变型设计,针对产品模型的最小模块,提出了变异点概念,并在分析产品结构的基础上,将反向传播神经网络引入到变型设计中,建立了快速定位变异点的反向传播人工神经网络模型,较好地解决了人为确定变异点的杂乱性与欠准确... 为了对产品进行有效变型设计,针对产品模型的最小模块,提出了变异点概念,并在分析产品结构的基础上,将反向传播神经网络引入到变型设计中,建立了快速定位变异点的反向传播人工神经网络模型,较好地解决了人为确定变异点的杂乱性与欠准确性问题。最后进行了实证分析,结果表明,采用反向传播人工神经网络快速定位变异点是可行的。 展开更多
关键词 反向传播神经网络 模块划分 变型设计 变异点
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部