期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
梯度区分与特征范数驱动的开放世界目标检测
1
作者 张英俊 闫薇薇 +2 位作者 谢斌红 张睿 陆望东 《计算机应用》 北大核心 2025年第7期2203-2210,共8页
开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDF... 开放世界目标检测(OWOD)将目标检测任务拓展至真实多变的环境中,要求模型能准确识别已知和未知对象,并逐步学习新知识。针对现有OWOD网络模型中未知类的召回率偏低和误识别的问题,提出一种梯度区分与特征范数驱动的开放世界目标检测(GDFN-OWOD)网络模型。针对未知类召回率偏低的问题,提出梯度区分性表征模块(GDRM),即利用反向传播的梯度差异区分未知类别和背景,以提高未知类召回率;此外,引入基于图分割的框聚类(GSBC)算法将物体边界框的确定建模为图分解问题,从而减少冗余的边界框,进而降低模型的计算量;针对未知类误识别的问题,采用基于特征范数的分类器(FN-BC)选择性能最优的卷积层识别已知和未知类别,以达到更高的识别准确率。在M-OWODB数据集上的实验结果表明,与最优对比模型相比在T1、T2、T3任务中GDFN-OWOD的未知类召回率分别提升了1.1、2.1、0.9个百分点,而绝对开集误差(A-OSE)分别降低了35.1%、28.7%和12.2%。可见,与现有的OWOD网络模型相比,所提网络模型有效缓解了未知类的召回率偏低和误识别的问题。 展开更多
关键词 开放世界目标检测 反向传播梯度 图分割算法 特征范数 卷积神经网络
在线阅读 下载PDF
基于多注意力图的孪生网络视觉目标跟踪 被引量:5
2
作者 齐天卉 张辉 +1 位作者 李嘉锋 卓力 《信号处理》 CSCD 北大核心 2020年第9期1557-1566,共10页
在视觉跟踪应用中,目标外观通常由包含目标的矩形区域来建模,这种矩形化边框的描述方式不可避免地引入了背景干扰,并随着场景变化导致跟踪关注点的模糊及歧义,进而产生跟踪漂移。针对以上问题,提出了一种基于多注意力图的孪生网络视觉... 在视觉跟踪应用中,目标外观通常由包含目标的矩形区域来建模,这种矩形化边框的描述方式不可避免地引入了背景干扰,并随着场景变化导致跟踪关注点的模糊及歧义,进而产生跟踪漂移。针对以上问题,提出了一种基于多注意力图的孪生网络视觉目标跟踪算法。首先,建立了一种关注于前景目标区域特征表达的孪生网络。该网络通过构建梯度注意力图损失函数项来引导网络训练,提升网络区分目标和干扰背景的能力。此外,嵌入通道注意力和空间注意力进一步强化目标的特征表达,自动发掘有区分的特征表示。在多个公共数据集上的实验验证了提出算法的有效性,以及算法可完成实时的视觉目标跟踪。 展开更多
关键词 视觉目标跟踪 孪生网络 梯度引导反向传播 注意力机制
在线阅读 下载PDF
基于自适应编码的脉冲神经网络 被引量:5
3
作者 张驰 唐凤珍 《计算机应用研究》 CSCD 北大核心 2022年第2期593-597,共5页
脉冲神经网络(SNN)采用脉冲序列表征和传递信息,与传统人工神经网络相比更具有生物可解释性,但典型SNN的特征提取能力受到其结构限制,对于图像数据等多分类任务的识别准确率不高,不能与卷积神经网络相媲美。为此提出一种新型的自适应编... 脉冲神经网络(SNN)采用脉冲序列表征和传递信息,与传统人工神经网络相比更具有生物可解释性,但典型SNN的特征提取能力受到其结构限制,对于图像数据等多分类任务的识别准确率不高,不能与卷积神经网络相媲美。为此提出一种新型的自适应编码脉冲神经网络(SCSNN),将CNN的特征提取能力与SNN的生物可解释性结合起来,采用生物神经元动态脉冲触发特性构建网络结构,并设计了一种新的替代梯度反向传播方法直接训练网络参数。所提出的SCSNN分别在MNIST和Fashion-MNIST数据集进行验证,取得较好的识别结果,在MNIST数据集上准确率达到了99.62%,在Fashion-MNIST数据集上准确率达到了93.52%,验证了其有效性。 展开更多
关键词 脉冲神经网络 自适应编码 替代梯度反向传播 漏电积分发放神经元模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部