期刊文献+
共找到550篇文章
< 1 2 28 >
每页显示 20 50 100
采用遗传-反向传播人工神经网络法构建新疆地区癫痫患儿拉考沙胺血药浓度预测模型
1
作者 赵婷 孙岩 +5 位作者 李红健 张惠兰 于静 冯杰 王婷婷 于鲁海 《儿科药学杂志》 CAS 2024年第4期4-8,共5页
目的:利用遗传-反向传播(GA-BP)人工神经网络法构建新疆地区癫痫患儿拉考沙胺(LCM)血药浓度的预测模型。方法:采用超高效液相色谱法测定400例癫痫患儿的LCM稳态血药浓度,收集患儿临床资料,提取相关数据,采用GA-BP人工神经网络法构建LCM... 目的:利用遗传-反向传播(GA-BP)人工神经网络法构建新疆地区癫痫患儿拉考沙胺(LCM)血药浓度的预测模型。方法:采用超高效液相色谱法测定400例癫痫患儿的LCM稳态血药浓度,收集患儿临床资料,提取相关数据,采用GA-BP人工神经网络法构建LCM血药浓度的预测模型。结果:模型验证结果显示,80例预测浓度的平均预测误差(MPE)绝对值均<10%,预测误差(PE)绝对值<20%的比例是100%,PE绝对值<10%的比例是92.50%,平均预测绝对误差(MAE)为2.28%,提示GA-BP模型预测的准确度和精密度均较好,预测浓度和实测浓度的相关系数为0.998,预测结果较理想。结论:应用GA-BP人工神经网络法预测LCM血药浓度是可行的,可应用于LCM个体化给药研究,促进临床合理用药。 展开更多
关键词 癫痫 拉考沙胺 血药浓度 遗传-反向传播人工神经网络
在线阅读 下载PDF
正交试验联合反向传播人工神经网络优选熄风止动颗粒提取工艺 被引量:3
2
作者 王娣 陈娟 +1 位作者 鲁文静 杨智峰 《儿科药学杂志》 CAS 2022年第1期27-30,共4页
目的:优选熄风止动颗粒的提取工艺。方法:采用正交试验联合反向传播人工神经网络(BP-ANN)的方法,以天麻素含量与干膏率的综合评分为指标,对熄风止动颗粒提取工艺的加水量、提取次数及提取时间进行优化,最终确定最佳提取工艺。结果:筛选... 目的:优选熄风止动颗粒的提取工艺。方法:采用正交试验联合反向传播人工神经网络(BP-ANN)的方法,以天麻素含量与干膏率的综合评分为指标,对熄风止动颗粒提取工艺的加水量、提取次数及提取时间进行优化,最终确定最佳提取工艺。结果:筛选得到最佳提取工艺为处方量药材加水浸泡1 h后,回流提取2次,第1次提取加水14.4倍量(按干药材质量计),第2次提取加水11倍量,每次提取75 min。结论:正交试验联合BP-ANN优选出的提取工艺提取效率高、能耗低、稳定可靠,可为熄风止动颗粒的工业化生产提供实验依据。 展开更多
关键词 熄风止动颗粒 天麻素 正交试验 反向传播人工神经网络 提取工艺
在线阅读 下载PDF
复合对向-反向传播人工神经网络模型及其应用 被引量:1
3
作者 张尊建 余书勤 +1 位作者 相秉仁 安登魁 《中国药科大学学报》 CAS CSCD 北大核心 1996年第11期701-704,共4页
组合Kohonen竞争学习和反向传播学习的优点,本文首次提出了复合对向-反向传播人工神经网络模型,该模型较好地体现了生物神经网络系统信息处理时的自适应、自组织、分布式存贮及并行处理等特点。它保留了反向传播网络的优点,... 组合Kohonen竞争学习和反向传播学习的优点,本文首次提出了复合对向-反向传播人工神经网络模型,该模型较好地体现了生物神经网络系统信息处理时的自适应、自组织、分布式存贮及并行处理等特点。它保留了反向传播网络的优点,同时较后者更易收敛,计算时间缩短,网络参数设置也更为自由。通过在临床精液检查结果分析中的成功应用,证明了该系统的有效性和可靠性。 展开更多
关键词 人工神经网络 学习算法 模型 复合对向 反向传播
在线阅读 下载PDF
利用粒子群算法优化反向传播人工神经网络模型预测熏肠中4种多环芳烃含量
4
作者 邢巍 刘兴运 +6 位作者 许朝阳 惠腾 王石宇 蔡克周 周辉 陈从贵 徐宝才 《肉类研究》 2022年第1期34-40,共7页
构建基于粒子群优化(particle swarm optimization,PSO)算法的反向传播人工神经网络(back propagation artificial neural network,BP-ANN)预测模型,对熏肠中4种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)(苯并(a)芘、苯并(a)蒽... 构建基于粒子群优化(particle swarm optimization,PSO)算法的反向传播人工神经网络(back propagation artificial neural network,BP-ANN)预测模型,对熏肠中4种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)(苯并(a)芘、苯并(a)蒽、苯并(b)荧蒽、䓛)含量进行预测。以烟熏温度、烟熏时间、肥瘦比和熏肠色泽(红绿值和黄蓝值)作为BP-ANN模型的输入层参数,熏肠的4种PAHs含量作为输出层参数,通过PSO-BP-ANN模型来优化初始权重和阈值,以获得最佳参数。结果表明:构建的PSO-BP-ANN熏肠PAHs含量预测模型均方误差为0.018,模型的训练、验证、测试和全局数据集的相关系数(R^(2))分别为0.951、0.929、0.933和0.940,均优于BP-ANN模型,使用PSO-BP-ANN模型具有更好的准确性和鲁棒性。 展开更多
关键词 熏肠 反向传播人工神经网络 优化设计 多环芳烃 灵敏度分析
在线阅读 下载PDF
基于列文伯格-马夸尔特-反向传播人工神经网络的X射线荧光光谱定量分析方法 被引量:3
5
作者 李芳 陆安祥 王纪华 《食品安全质量检测学报》 CAS 2016年第3期1152-1158,共7页
目的建立一种基于列文伯格-马夸尔特-反向传播人工神经网络(Levenberg-Marquardt back-propagation artificial neural networks,LM-BP-ANN)的X射线荧光光谱(XRF)的定量检测分析方法。方法采集84个土壤样品光谱数据,预处理后应用主成分... 目的建立一种基于列文伯格-马夸尔特-反向传播人工神经网络(Levenberg-Marquardt back-propagation artificial neural networks,LM-BP-ANN)的X射线荧光光谱(XRF)的定量检测分析方法。方法采集84个土壤样品光谱数据,预处理后应用主成分分析(PCA)提取特征参数,随机选取训练集、校正集、预测集样品个数分别为42、21、21。以均方差(MSE)、校正决定系数(R^2)、校正标准差(SEC)、验证决定系数(r^2)、预测标准差(SEP)和相对预测误差(RPD)为评价指标,同时分析比较LM-BP-ANN、BP-ANN、PLS三种算法的建模结果,并利用模型预测土壤重金属含量。结果实验确定隐含层神经元数目、学习率和迭代次数值依次为:6、0.1和8,3种建模方法中LM-BP-ANN效果最优,模型的相关系数高于0.98,表明模型有效。结论模型分析快速,可用于实际土壤样品中重金属含量的检测,对于改进X射线荧光光谱仪的检测准确度有着重要的意义。 展开更多
关键词 列文伯格-马夸尔特算法 反向传播神经网络 X射线荧光光谱
在线阅读 下载PDF
反向传播-人工神经网络在辐照黑椒牛肉品质预测中的应用 被引量:3
6
作者 游云 黄晓霞 +6 位作者 肖斯立 刘巧瑜 蓝碧锋 胡昕 吴俊师 杨娟 曾晓房 《食品科学》 EI CAS CSCD 北大核心 2024年第8期228-237,共10页
为探究不同辐照处理对贮藏过程中黑椒牛肉品质变化的影响,建立基于理化指标的多种品质预测模型。3~4 kGy的辐照剂量能够有效延缓黑椒牛肉在贮藏过程中的汁液流失、脂质氧化和蛋白质降解,保持其硬度和微观结构,在一定程度上增加呈鲜味(A... 为探究不同辐照处理对贮藏过程中黑椒牛肉品质变化的影响,建立基于理化指标的多种品质预测模型。3~4 kGy的辐照剂量能够有效延缓黑椒牛肉在贮藏过程中的汁液流失、脂质氧化和蛋白质降解,保持其硬度和微观结构,在一定程度上增加呈鲜味(Asp)和甜味(Gly、Ala、Ser)游离氨基酸的含量。以辐照黑椒牛肉的汁液流失率、硫代巴比妥酸反应产物值、总挥发性盐基氮值、原肌球蛋白条带强度比率、肌球蛋白重链条带强度比率和总游离氨基酸含量为输入变量,优化了反向传播-人工神经网络(backpropagation-artificial neural network,BP-ANN)模型。训练函数为ReLU函数,隐藏层神经元个数为14个,迭代次数100次。结果表明,6-14-6 BP-ANN模型可以较好地预测辐照黑椒牛肉的品质变化,该模型在预测辐照肉制品的多种品质方面具有很大潜力。 展开更多
关键词 黑椒牛肉 ^(60)Co-γ射线 品质 反向传播-人工神经网络 预测模型
在线阅读 下载PDF
预测输尿管软镜碎石术后并发尿源性脓毒症的反向传播神经网络模型构建
7
作者 陈文炜 何彦丰 +5 位作者 卢凯鑫 刘昌毅 江涛 张华 高锐 薛学义 《浙江大学学报(医学版)》 北大核心 2025年第1期99-107,I0032-I0034,共12页
目的:构建输尿管软镜碎石术(FURL)后并发尿源性脓毒症的反向传播神经网络预测模型。方法:纳入428例接受FURL的肾结石患者,根据术后是否并发尿源性脓毒症分为脓毒症组(42例)和对照组(386例)。采用logistic回归分析确定FURL后并发尿源性... 目的:构建输尿管软镜碎石术(FURL)后并发尿源性脓毒症的反向传播神经网络预测模型。方法:纳入428例接受FURL的肾结石患者,根据术后是否并发尿源性脓毒症分为脓毒症组(42例)和对照组(386例)。采用logistic回归分析确定FURL后并发尿源性脓毒症的影响因素及其交互作用。同时建立logistic回归模型和神经网络模型进行预测,通过受试者工作特征曲线评估两种模型的预测效能。结果:单因素分析显示,结石手术史、性别、尿培养阳性、结石直径、糖尿病、手术时间、白细胞、血小板、C反应蛋白(CRP)及肝素结合蛋白(HBP)水平与FURL后并发尿源性脓毒症显著相关(均P<0.05)。多因素分析表明,尿培养阳性、CRP及HBP水平是FURL后并发尿源性脓毒症的独立危险因素(均P<0.05)。交互作用分析显示,CRP与HBP对FURL后并发尿源性脓毒症的影响在相加模型(RERI=8.453,95%CI:2.645~16.282;AP=0.696,95%CI:0.131~1.273;S=3.369,95%CI:1.176~7.632)和相乘模型(OR=1.754,95%CI:1.218~3.650)中存在交互作用;CRP与尿培养对FURL后并发尿源性脓毒症的影响在相乘模型(OR=2.449,95%CI:1.525~3.825)中存在交互作用。预测模型比较显示,反向传播神经网络模型较logistic回归模型具有更优的预测效能。结论:CRP和HBP水平是FURL后并发尿源性脓毒症的独立危险因素,基于CRP、HBP等因素构建的反向传播神经网络模型较logistic回归模型具有更高的预测准确性。 展开更多
关键词 肝素结合蛋白 C反应蛋白 输尿管软镜碎石术 尿源性脓毒症 预测 LOGISTIC回归模型 反向传播神经网络模型
在线阅读 下载PDF
基于实验设计和反向传播神经网络的板式传热元件性能评估
8
作者 王幼石 焦育 +5 位作者 李旭昆 马金伟 姚立影 刘一凡 吕庆欢 张楠楠 《石油化工设备》 2025年第2期15-20,共6页
针对新型鼓泡板式传热元件的传热性能参数,采用实验设计的方法通过实验测定不同工况下的总传热系数,通过响应曲面法拟合得到板型、工艺参数和总传热系数的二阶响应曲面模型。同时根据实验结果,采用计算机仿真方法建立总传热系数反向传... 针对新型鼓泡板式传热元件的传热性能参数,采用实验设计的方法通过实验测定不同工况下的总传热系数,通过响应曲面法拟合得到板型、工艺参数和总传热系数的二阶响应曲面模型。同时根据实验结果,采用计算机仿真方法建立总传热系数反向传播神经网络预测模型。验证实验结果表明,两种模型的预测值与实验测量值都有良好的一致性,在工业应用中,可为采用该类新型传热元件的板式热交换器提供设计和选型的理论支撑。 展开更多
关键词 传热元件 性能 评估 实验设计 反向传播神经网络
在线阅读 下载PDF
人工神经网络优化油莎豆油亚临界萃取工艺 被引量:1
9
作者 邓淑君 郝琴 +3 位作者 万楚筠 郭婷婷 魏春磊 郑明明 《中国油料作物学报》 CAS CSCD 北大核心 2024年第5期1178-1186,共9页
为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-... 为优化亚临界丁烷萃取脱皮油莎豆油工艺,采用单因素试验确定因素水平,中心复合表面设计(CCF)安排寻优试验,在此基础上分别构建了响应面(RSM)和反向传播人工神经网络(BP-ANN)模型,运用粒子群算法(PSO)对BP-ANN模型进行优化,并对RSM和PSO-BP-ANN模型的寻优结果进行了比较。结果表明,RSM模型优化的萃取条件为:料液比(脱皮油莎豆∶丁烷)1∶10.36 g/mL、萃取时间45 min、萃取温度30℃、坯料厚度0.5 mm;PSOBP-ANN模型优化的萃取条件为:料液比1∶10.67 g/mL、萃取时间40.10 min、萃取温度34℃、轧坯厚度0.5 mm。在最佳条件下,RSM模型预测提取率为91.63%,验证值为94.27%,相对误差2.56%;PSO-BP-ANN模型预测值为95.58%,验证值为95.14%,相对误差0.46%。采用人工神经网络耦合粒子群算法(PSO-BP-ANN)优化油莎豆油亚临界萃取工艺,具有提取率高、相对误差小等优势。本研究可为亚临界萃取技术在油莎豆油高效制取中应用提供参考。 展开更多
关键词 反向传播人工神经网络 粒子群优化算法 亚临界丁烷萃取 脱皮油莎豆 工艺优化
在线阅读 下载PDF
基于帝国竞争反向传播神经网络的断块油田开发顺序优化
10
作者 徐庆岩 孙晓飞 +3 位作者 翟光华 王瑞峰 雷诚 张瑾琳 《石油地质与工程》 CAS 2024年第3期77-81,89,共6页
明确断块油田群中断块的开发顺序是进行开发方案设计的前提条件。断块油田数量较少时,可以进行技术经济的组合对比,但是断块数量较多时会形成海量的组合,耗费时间也长。断块油田开发顺序评价的现有方法有权重评价法、层次分析法、综合... 明确断块油田群中断块的开发顺序是进行开发方案设计的前提条件。断块油田数量较少时,可以进行技术经济的组合对比,但是断块数量较多时会形成海量的组合,耗费时间也长。断块油田开发顺序评价的现有方法有权重评价法、层次分析法、综合模糊评判法等,这些方法在选择评价指标和指标权重上带有较强的主观性,无法做到完全客观的评价。因此本文提出一种基于帝国竞争算法改进的反向传播神经网络模型,首先采用Spearman相关系数法确定影响断块油田开发的主控因素,其次使用分段三次Hermite插值方法实现断块油田群开发数据库的扩充,最后在扩充后的大量数据库训练样本的基础上,基于帝国竞争算法改进的反向传播神经网络模型可以确定影响开发效果参数的权重并预测断块油田群中各断块油田的净现值,根据净现值大小可以确定每个断块的开发顺序。该方法以实际断块油田群的地质油藏数据库作为评价依据,断块油田的开发顺序更加的科学合理,项目整体的净现值也明显高于依靠传统方法确定的开发顺序组合,避免了人为主观性,也节省了数值模拟和经济评价的工作量,克服了现有方法的局限性,对于提高断块油田群开发综合效益具有重要意义。 展开更多
关键词 帝国竞争算法 反向传播神经网络 开发参数权重 投产顺序优化 断块油田群 净现值
在线阅读 下载PDF
基于脉冲序列标识的深度脉冲神经网络时空反向传播算法 被引量:2
11
作者 王子华 叶莹 +3 位作者 刘洪运 许燕 樊瑜波 王卫东 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2596-2604,共9页
尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深... 尖峰放电的脉冲神经网络(SNN)具有接近大脑皮层的信号处理模式,被认为是实现大脑启发计算的重要途径。但是,目前对于深度脉冲神经网络的学习仍缺乏有效的监督学习算法。受尖峰放电速率标识的时空反向传播算法的启发,该文提出一种面向深度脉冲神经网络训练的基于时间脉冲序列标识的监督学习算法,通过定义突触后电位和膜电位反传迭代因子分别分析脉冲神经元的空间和时间依赖关系,使用替代梯度的方法解决反传过程中不连续可微的问题。不同于现有基于尖峰放电速率标识的学习算法,该算法能够充分反映脉冲神经网络输出的时间脉冲序列的动态特性。因此,所提算法非常适合应用于需要较长时间序列标识的计算任务,例如行为的时间脉冲序列控制。该文在静态图像数据集CIFAR10和神经形态数据集NMNIST上验证了所提算法的有效性,在所有这些数据集上都显示出良好的性能,这有助于进一步研究基于时间脉冲序列应用的大脑启发计算。 展开更多
关键词 脉冲神经网络 监督学习 误差反向传播 时间脉冲序列标识 替代梯度
在线阅读 下载PDF
基于反向传播神经网络PID的高功率微波炉温度控制 被引量:4
12
作者 王威 李少甫 +2 位作者 吴昊 蒋成 唐颖颖 《强激光与粒子束》 CAS CSCD 北大核心 2024年第1期55-61,共7页
针对现有10 kW高功率工业微波炉,采用继电器作为控制执行器,在使用传统控制方法加热时,温度存在较大超调和明显振荡,系统温度稳定性较低,为解决上述问题将反向传播神经网络PID(BPNNPID)控制引入到该装置微波加热温度控制中,并以自来水... 针对现有10 kW高功率工业微波炉,采用继电器作为控制执行器,在使用传统控制方法加热时,温度存在较大超调和明显振荡,系统温度稳定性较低,为解决上述问题将反向传播神经网络PID(BPNNPID)控制引入到该装置微波加热温度控制中,并以自来水为加热对象进行仿真对比与实验验证。首先,利用现有输入输出实验数据,建立工业微波炉温度控制模型;其次,运用MATLAB/SIMULINK搭建高功率工业微波炉温度控制系统并进行仿真对比实验;最后,实验验证BPNNPID控制方法在加热5 kg自来水时工业微波炉的温度控制性能,实验结果表明,较常规PID、模糊PID控制,该方法在微波加热过程中对媒质温度控制超调更小且未发生明显温度振荡,有效改善了高功率工业微波炉工作时的系统温度稳定性,有助于提高产品质量和安全性能。 展开更多
关键词 高功率 微波加热 反向传播神经网络 PID 温度控制
在线阅读 下载PDF
基于人工神经网络的沿海地区底泥盐度计算模型
13
作者 袁静 王锐 喻国良 《华北水利水电大学学报(自然科学版)》 北大核心 2024年第4期102-108,共7页
底泥盐度与海洋科学、河口研究、环境管理等密切相关,现有的底泥盐度计算公式存在精度不足、适用性有限等问题。为此,开展了271组室内试验和10组户外试验,整合了其他学者的研究数据,以底泥电导率、泥沙浓度、温度和细颗粒表面系数为模... 底泥盐度与海洋科学、河口研究、环境管理等密切相关,现有的底泥盐度计算公式存在精度不足、适用性有限等问题。为此,开展了271组室内试验和10组户外试验,整合了其他学者的研究数据,以底泥电导率、泥沙浓度、温度和细颗粒表面系数为模型输入变量,分别建立了用于计算沿海地区底泥盐度的反向传播人工神经网络(BP-ANN)模型、粒子群优化的反向传播人工神经网络(PSO-BP-ANN)模型、结合遗传算法的反向传播人工神经网络(GA-BP-ANN)模型。与现有的底泥盐度计算公式相比,新建模型的精度更高,可为沿海地区底泥盐度的确定提供更多可供选择的预测方法。 展开更多
关键词 底泥盐度 人工神经网络模型 反向传播 粒子群优化 遗传算法
在线阅读 下载PDF
基于遗传算法-反向传播神经网络优化高压-超声-酶解法提取羊皮胶原蛋白工艺
14
作者 朱明 张德权 +5 位作者 李少博 陈丽 侯成立 程成鹏 于江颖 关文强 《肉类研究》 北大核心 2024年第6期42-50,共9页
采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最... 采用高压-超声-酶解法提取羊皮胶原蛋白,对比遗传算法-反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型和响应面模型的优化效果,确定最佳工艺参数。结果表明:GA-BP神经网络在模型拟合和预测方面表现优于响应面模型;最佳提取参数为高压时间23 min、超声时间22 min、酶添加量3.2%、酶解时间222 min,羊皮胶原蛋白提取率达到(80.5±1.6)%,较传统的木瓜蛋白酶法提高40%;紫外-可见吸收光谱和傅里叶变换红外光谱结果显示,此条件下提取的羊皮胶原蛋白结构完整,高压-超声-酶解法对胶原蛋白的破坏较小。 展开更多
关键词 羊皮 羊皮胶原蛋白 高压-超声-酶解法 遗传算法-反向传播神经网络 响应面法
在线阅读 下载PDF
人工神经网络在电力营销系统中的应用与实现 被引量:2
15
作者 方晓萌 章玉 +2 位作者 赵夏楠 巩莹 刘豪 《科技创新与应用》 2024年第13期167-170,共4页
在电力行业信息化发展背景下,收集与存储大量电力数据,可为电力企业营销决策制定提供依据。该文提出采用人工神经网络构建电力营销系统BP神经网络模型,通过智能决策树分类算法预处理模型数据,得到最优化的模型数据,并改进神经网络隐含... 在电力行业信息化发展背景下,收集与存储大量电力数据,可为电力企业营销决策制定提供依据。该文提出采用人工神经网络构建电力营销系统BP神经网络模型,通过智能决策树分类算法预处理模型数据,得到最优化的模型数据,并改进神经网络隐含层节点数目算法,结合应用分时段预测方法及共轭梯度算法分别进行网络训练及网络结构优化,为网络收敛速度加快提供保障,得出相对准确的电力营销年度电量预测结论,说明电力营销系统中人工神经网络具有较高的应用价值。 展开更多
关键词 人工神经网络 电力营销 误差反向传播模型 BP神经网络模型 决策树分类算法
在线阅读 下载PDF
基于反向传播神经网络的分航段船舶油耗预测模型
16
作者 马琳 杨平 《中国航海》 CSCD 北大核心 2024年第4期168-174,共7页
对船舶主机油耗进行预测是船舶进行能效优化的基础和前提,对于不同航行区域下的船舶油耗预测结果进行分析,更能提升油耗模型的预测性能。根据航行区域等因素选取5个航段作为试验对象并建立油耗模型,对主机油耗的影响因素进行分析。选择... 对船舶主机油耗进行预测是船舶进行能效优化的基础和前提,对于不同航行区域下的船舶油耗预测结果进行分析,更能提升油耗模型的预测性能。根据航行区域等因素选取5个航段作为试验对象并建立油耗模型,对主机油耗的影响因素进行分析。选择主机转速、风速、风向等作为模型的输入变量,选择主机瞬时油耗和航速作为输出变量,利用反向传播神经网络对油耗进行预测。试验结果表明各个航段油耗和航速的预测结果误差分别不超过2.5%和1.8%,风力变化较为平稳的航段2和航段3的预测误差低于其他航段;模型的预测精度会受到风力变化程度的影响,但在不同航段的预测性能均可满足后续进行能效优化的要求。 展开更多
关键词 主机油耗预测 航速预测 反向传播神经网络(BPNN) 评价指标 航段划分
在线阅读 下载PDF
基于反向传播神经网络和高光谱成像的芒果可溶性固形物含量检测 被引量:1
17
作者 常洪娟 蒙庆华 +7 位作者 吴哲锋 邱邹全 倪淳宇 马煜雯 桑丽婷 姚嘉炜 黄玉清 李钰 《食品安全质量检测学报》 CAS 2024年第2期141-148,共8页
目的比较反向传播神经网络(backpropagation algorithm neural network,BPNN)模型与偏最小二乘回归(partial least squares regression,PLSR)模型在预测芒果可溶性固形物含量(soluble solids content,SSC)方面的性能。方法使用高光谱成... 目的比较反向传播神经网络(backpropagation algorithm neural network,BPNN)模型与偏最小二乘回归(partial least squares regression,PLSR)模型在预测芒果可溶性固形物含量(soluble solids content,SSC)方面的性能。方法使用高光谱成像仪和全自动折光仪采集芒果的近红外高光谱及SSC数据,建立两种预测模型,采用多元散射校正(multiplicative scatter correction,MSC)进行光谱预处理,利用遗传算法(genetic algorithm,GA)、区间变量迭代空间收缩算法(interval variable iterative space shrinkage algorithms,IVISSA)和变量组合群体分析算法(variable combination population analysis,VCPA)提取特征波长变量,通过比较不同特征波长提取方法进一步优化对比预测模型。结果与PLSR模型相比,BPNN模型在预测SSC方面更为有效。而在IVISSA特征波长变量提取后优化的BPNN模型预测能力最佳,预测集判定系数R_(p)^(2)、均方根误差(root mean square error of prediction,RMSEP)、残差预测偏差(residual prediction deviation,RPD)分别为0.8641、0.3924和2.7127。结论该模型可快速、准确地检测芒果的SSC,并证明可见光-近红外高光谱成像与反向传播神经网络模型相结合有望预测芒果的SSC,为开发在线芒果SSC无损检测系统奠定基础。 展开更多
关键词 可见光-近红外高光谱成像 芒果 无损检测 可溶性固形物含量 反向传播神经网络
在线阅读 下载PDF
大容积电烤箱内传热过程的反向传播神经网络控制算法
18
作者 姚青 唐巍峰 +4 位作者 郑鑫 王锐 梁文龙 刘玉贤 褚雯霄 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期73-83,共11页
大容积电烤箱内存在严重加热不均匀问题,限制其在商业和家用领域的广泛应用,传统比例-积分-微分(PID)控制算法存在弛豫时间长、温控精度差等问题,导致被加热目标无法维持在最佳烹饪热环境。通过自编程构建了一种反向传播神经网络(BPNN)... 大容积电烤箱内存在严重加热不均匀问题,限制其在商业和家用领域的广泛应用,传统比例-积分-微分(PID)控制算法存在弛豫时间长、温控精度差等问题,导致被加热目标无法维持在最佳烹饪热环境。通过自编程构建了一种反向传播神经网络(BPNN)控制策略,以改善大容积电烤箱的加热速率、温控精度及热均匀性为目标,通过局部速度、温度分布与美拉德反应可视化实验测试,探究了风扇转速、对流与辐射加热功率和排气流量等因素的影响。实验结果表明:在提升算法鲁棒性后,BPNN算法对烤箱内温度预测误差显著降低;相比PID控制方法,采用BPNN算法的被加热目标过热度最多降至6℃,温控精度显著提高;被加热目标表面温度的相对极差从54%降至36%,速度相对极差从71.4%下降至39%,均匀性显著增强;电烤箱的加热弛豫时间从230 s降至100 s。BPNN算法能够实现大容积电烤箱更精确、更快速、更均匀的温度控制。 展开更多
关键词 电烤箱 反向传播神经网络 对流与辐射 热均匀性 弛豫时间
在线阅读 下载PDF
基于AHP-熵权法的正交试验和GA-BP神经网络优选关节止痛汤提取工艺
19
作者 白淑贤 王单单 +3 位作者 吴作敏 于晓涛 金少举 王瑞 《中国现代中药》 2025年第2期310-317,共8页
目的:优选关节止痛汤的提取工艺。方法:在单因素考察的基础上,以加水量、提取时间、提取次数为考察因素,以京尼平苷酸、松脂醇二葡萄糖苷、阿魏酸、杯苋甾酮的含量和出膏率为评价指标,采用层次分析法(AHP)-熵权法确定各指标权重。通过... 目的:优选关节止痛汤的提取工艺。方法:在单因素考察的基础上,以加水量、提取时间、提取次数为考察因素,以京尼平苷酸、松脂醇二葡萄糖苷、阿魏酸、杯苋甾酮的含量和出膏率为评价指标,采用层次分析法(AHP)-熵权法确定各指标权重。通过正交试验和遗传算法(GA)-反向传播(BP)神经网络法优选关节止痛汤的提取工艺参数,并对2种方法所得工艺参数进行验证比较。结果:正交试验所得最佳工艺参数为加水量6倍、提取时间0.5 h、提取3次,综合评分为90.21(RSD为1.38%);GA-BP神经网络优化得到的最佳工艺参数为加水量6倍、提取时间1.5 h、提取4次,综合评分为99.26(RSD为0.09%),结合实际生产需求,最终确定关节止痛汤的最佳提取工艺参数为加水量6倍、提取时间0.5 h、提取3次。结论:采用正交试验结合GA-BP神经网络所优选的提取工艺参数稳定、可靠,可为后续研发提供参考。 展开更多
关键词 关节止痛汤 层次分析法-熵权法 正交试验 遗传算法-反向传播神经网络
在线阅读 下载PDF
基于人工神经网络的水库水资源规划管理
20
作者 郑永强 《水利科学与寒区工程》 2024年第7期83-87,共5页
水库管理直接影响水库中水资源利用效率。文中采用两种人工神经网络方法对水库进行管理,通过预测给定水库未来的月流入量和每月蒸发量来估计每个月底水库的总蓄水量。研究中采用的人工神经网络方法是径向基函数(RBF)和前馈-反向传播(FF... 水库管理直接影响水库中水资源利用效率。文中采用两种人工神经网络方法对水库进行管理,通过预测给定水库未来的月流入量和每月蒸发量来估计每个月底水库的总蓄水量。研究中采用的人工神经网络方法是径向基函数(RBF)和前馈-反向传播(FFBP)方法。将人工神经网络的结果与新疆某水库实际运行的结果进行了比较,结果显示,人工神经网络能够较为准确地反映水库实际蓄水量,能有效应用于水库管理。 展开更多
关键词 径向基函数 前馈-反向传播 人工神经网络 水库管理
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部