期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
反向传播神经网络结合紫外-近红外融合光谱对“互助”青稞酒的判别研究
1
作者 赵玉霞 张明锦 +2 位作者 王茹 张世芝 殷博 《光谱学与光谱分析》 北大核心 2025年第5期1290-1299,共10页
“互助”青稞酒作为保护地理标志产品,对其准确评价分类具有重要意义。紫外光谱(UV)和近红外光谱(NIR)技术具备快速、准确、无损检测、无需样品预处理等优势,在食品等领域已广泛应用。本研究采用UV、NIR及紫外-近红外中级数据融合光谱(U... “互助”青稞酒作为保护地理标志产品,对其准确评价分类具有重要意义。紫外光谱(UV)和近红外光谱(NIR)技术具备快速、准确、无损检测、无需样品预处理等优势,在食品等领域已广泛应用。本研究采用UV、NIR及紫外-近红外中级数据融合光谱(UV-NIR)结合反向传播神经网络(BPNN)法建立了快速、无损、高效的“互助”青稞酒判别分类模型。由于光谱特征峰叠加干扰,未经优化的光谱受到噪声和基线漂移等影响,采用标准正态变量变换(SNV)、Savitzky-Golay平滑(SG)、一阶导数(1D)和二阶导数(2D)4种预处理方法对光谱进行去噪处理。相对单一光谱,融合光谱能够互补多元化学信息,提高分类模型性能,通过竞争自适应重加权采样(CARS)、连续投影算法(SPA)、主成分分析(PCA)、变量投影重要性分析(VIP)和变量组合集群分析(VCPA)5种变量筛选方法选择特征变量,达到优化模型性能及融合两种光谱有效信息。选择最佳方法建立单一光谱和融合光谱的BPNN模型。结果表明,UV光谱经SNV预处理以SPA选择30个特征变量建立的分类模型识别效果最好,分类准确率为100%,MSE值、R_(P)^(2)、R(Train)、R(Validation)、R(Test)和R(All)分别为0.0180、1、0.9283、0.9587、0.9130、0.9297;NIR和UV-NIR经SG预处理后以PCA分别选择84和106个特征变量建立的分类模型识别效果最好,NIR光谱分类准确率为100%,MSE值、R_(P)^(2)、R(Train)、R(Validation)、R(Test)和R(All)分别为0、1.000、1.000、1.000、1.000、1.000;UV-NIR光谱分类准确率为100%、MSE值、R_(P)^(2)、R(Train)、R(Validation)、R(Test)和R(All)分别为0.0057、1.000、1.000、0.9871、0.9913、0.9964;与单一光谱建模相比,融合光谱可明显提高分类模型的预测能力和稳健性,实现“互助”青稞酒的快速、无损分析。 展开更多
关键词 “互助”青稞酒 紫外光谱 近红外光谱 光谱融合 变量筛选 传播神经网络(bpnn)模型
在线阅读 下载PDF
基于Alopex进化算法和集成学习的多模态神经网络的污水反渗透过程建模
2
作者 周洋 梁聃 +2 位作者 汪恺 张艺蓝 贾立 《化工学报》 北大核心 2025年第4期1661-1670,共10页
面向污水反渗透给水预处理中超滤性能动态过程,提出一种基于训练质量的AdaBoost策略和基于Alopex进化算法的多模态神经网络机器学习方法。首先,构建了一类适用于任意分布的广义贝叶斯推断概率指标对超滤反渗透污水处理过程中过滤和反洗... 面向污水反渗透给水预处理中超滤性能动态过程,提出一种基于训练质量的AdaBoost策略和基于Alopex进化算法的多模态神经网络机器学习方法。首先,构建了一类适用于任意分布的广义贝叶斯推断概率指标对超滤反渗透污水处理过程中过滤和反洗等多模态状态进行分类,然后使用基于Alopex进化算法和基于分布的AdaBoost集成策略的神经网络算法针对每一个模态过程分别建模,最后利用构建的每个模态的基于广义贝叶斯推理的概率指标,将多模态的多个模型集成。为了验证所提方法的有效性,将该方法应用到美国某社区采集的两年数据集中,结果表明该方法对膜阻力和反洗效率具有很好的预测性能,能够很好地预测预期水质变化性能。 展开更多
关键词 超滤渗透过程 冲洗效率 水力膜阻力 传播神经网络
在线阅读 下载PDF
基于反向传播神经网络的分航段船舶油耗预测模型 被引量:3
3
作者 马琳 杨平 《中国航海》 CSCD 北大核心 2024年第4期168-174,共7页
对船舶主机油耗进行预测是船舶进行能效优化的基础和前提,对于不同航行区域下的船舶油耗预测结果进行分析,更能提升油耗模型的预测性能。根据航行区域等因素选取5个航段作为试验对象并建立油耗模型,对主机油耗的影响因素进行分析。选择... 对船舶主机油耗进行预测是船舶进行能效优化的基础和前提,对于不同航行区域下的船舶油耗预测结果进行分析,更能提升油耗模型的预测性能。根据航行区域等因素选取5个航段作为试验对象并建立油耗模型,对主机油耗的影响因素进行分析。选择主机转速、风速、风向等作为模型的输入变量,选择主机瞬时油耗和航速作为输出变量,利用反向传播神经网络对油耗进行预测。试验结果表明各个航段油耗和航速的预测结果误差分别不超过2.5%和1.8%,风力变化较为平稳的航段2和航段3的预测误差低于其他航段;模型的预测精度会受到风力变化程度的影响,但在不同航段的预测性能均可满足后续进行能效优化的要求。 展开更多
关键词 主机油耗预测 航速预测 传播神经网络(bpnn) 评价指标 航段划分
在线阅读 下载PDF
基于多模型神经网络的湿度廓线反演研究
4
作者 王金虎 肖安虹 +3 位作者 陈后财 王昊亮 刘萱 蔡海强 《电波科学学报》 CSCD 北大核心 2024年第1期181-190,共10页
为提升微波辐射计对大气廓线探测的精度,利用ARM大气观测站提供的地基微波辐射计、毫米波测云雷达以及探空数据,构建了两种添加不同云信息的反向传播神经网络(back propagation neural network,BPNN)模型(添加入云和出云高度的C-BPNN模... 为提升微波辐射计对大气廓线探测的精度,利用ARM大气观测站提供的地基微波辐射计、毫米波测云雷达以及探空数据,构建了两种添加不同云信息的反向传播神经网络(back propagation neural network,BPNN)模型(添加入云和出云高度的C-BPNN模型与添加雷达反射率因子的Z-BPNN模型)与一种未添加云信息的BPNN模型(记为BPNN0),并对反演结果进行了对比,结果表明:C-BPNN模型和Z-BPNN模型在任何天气下(有云或无云),得到的反演误差都小于BPNN0模型;C-BPNN相较于另外两种模型反演结果具有更高的稳定性。对3种模型各自反演结果最好的个例分析发现,C-BPNN与Z-BPNN模型主要的误差存在于高空无云但是相对湿度却出现跃变的情况,说明神经网络模型对初始权值与阈值较为敏感,因此通过遗传算法(genetic algorithms,GA)对BPNN模型进行优化。经GA优化后的反演结果表明:BPNN0模型与C-BPNN模型具有明显优化效果,而Z-BPNN模型优化效果则不明显。 展开更多
关键词 地基微波辐射计 毫米波雷达 湿度廓线 传播神经网络(bpnn) 遗传算法(GA)
在线阅读 下载PDF
误差反传播神经网络法地震反演 被引量:8
5
作者 陆文凯 李衍达 牟永光 《地球物理学报》 SCIE EI CAS CSCD 北大核心 1996年第S1期292-301,共10页
针对测井资料约束下的地震反演具体问题,在假定反演目标和地震资料之间存在某种非线性映射的情况下,用神经网络逼近反演问题中的正演和反演过程,综合构成一个大网络系统,并根据地震反演的具体问题,给出该系统的能量函数.系统采用... 针对测井资料约束下的地震反演具体问题,在假定反演目标和地震资料之间存在某种非线性映射的情况下,用神经网络逼近反演问题中的正演和反演过程,综合构成一个大网络系统,并根据地震反演的具体问题,给出该系统的能量函数.系统采用误差反传播法进行学习,从而实现用神经网络自适应地外推测井资料,有机地将神经网络与地震反演结合起来.对实际资料的测井速度外推结果表明,此法具有好的应用前景. 展开更多
关键词 神经网络 误差传播 地震
在线阅读 下载PDF
基于神经网络的二元混合液体自燃温度预测
6
作者 胡双启 郭丙宇 +1 位作者 程泽会 吴薇 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1710-1716,共7页
自燃温度(Auto-Ignition Temperature,AIT)是防火防爆安全设计的关键临界参数之一。为解决目前多数采用试验方法测量混合物AIT费时费力且有一定危险性的问题,运用定量结构性质关系方法,使用反向传播神经网络(Back Propagation Neural Ne... 自燃温度(Auto-Ignition Temperature,AIT)是防火防爆安全设计的关键临界参数之一。为解决目前多数采用试验方法测量混合物AIT费时费力且有一定危险性的问题,运用定量结构性质关系方法,使用反向传播神经网络(Back Propagation Neural Network,BPNN)和一维卷积神经网络(one-Dimensional Convolutional Neural Network,1DCNN)技术建立二元混合液体AIT预测模型。以二元混合液体的分子描述符为输入、试验测得的AIT为输出,经多种方法对模型的拟合性、稳定性和预测能力评价验证。结果表明,BPNN模型和1DCNN模型均有良好的预测能力,其均方根误差分别为4.780℃和9.603℃,拟合度与5折交叉验证拟合度差值分别为0.058和0.040,表明BPNN模型有更好的拟合能力,1DCNN模型有良好的稳定性。 展开更多
关键词 安全工程 传播神经网络(bpnn) 一维卷积神经网络(1DCNN) 二元混合液体 自燃温度
在线阅读 下载PDF
基于遗传算法神经网络的地源热泵夏季低负荷运行性能预测分析 被引量:9
7
作者 董艳芳 朱辉 +2 位作者 曾召田 门玉葵 梁秒梦 《科学技术与工程》 北大核心 2022年第12期4984-4992,共9页
为了探索夏热冬冷地区岩溶地质条件下地热能应用能效,通过运用遗传算法优化的反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型预测了夏季系统负荷率低于30%运行工况下地源热泵系统的系统能效比和机组能效比,分析了预... 为了探索夏热冬冷地区岩溶地质条件下地热能应用能效,通过运用遗传算法优化的反向传播(genetic algorithm-back propagation,GA-BP)神经网络模型预测了夏季系统负荷率低于30%运行工况下地源热泵系统的系统能效比和机组能效比,分析了预测值的预测误差评价指标,验证了GA-BP模型具有较高的预测精度,并应用此模型研究了地源热泵短期能效测试与中长期能效测评的关系。结果表明:GA-BP模型预测的系统能效比COPsys及机组能效比COP与计算值的相对误差为±5%,各项预测误差评价指标均比反向传播神经网络(back propagation neural network,BPNN)模型更小,可见GA-BP模型可用于预测岩溶地质条件下地源热泵系统能效。基于此模型,短期能效测试的最佳时期为一天中14:00—16:00或7、8月累计13 d,且满足机组负荷率达到60%~70%,COP_(sys)及COP预测值可以作为中长期能效比评估,其产生的相对误差在允许的范围内。 展开更多
关键词 地源热泵系统 机组负荷率 遗传算法(GA) 传播神经网络(bpnn) 能效比
在线阅读 下载PDF
基于主成分分析法优化神经网络的滆湖组黏性土抗剪强度预测 被引量:10
8
作者 顾春生 唐鑫 +3 位作者 朱常坤 陆志锋 刘涛 张其琪 《科学技术与工程》 北大核心 2023年第28期11980-11989,共10页
为了研究苏锡常地区滆湖组黏性土抗剪强度特性,建立抗剪强度参数预测模型;以研究区711组滆湖组黏性土物理力学试验数据为载体,运用主成分分析(principal component analysis,PCA)方法,从样本11个指标中提取影响目标变量的主成分;将其作... 为了研究苏锡常地区滆湖组黏性土抗剪强度特性,建立抗剪强度参数预测模型;以研究区711组滆湖组黏性土物理力学试验数据为载体,运用主成分分析(principal component analysis,PCA)方法,从样本11个指标中提取影响目标变量的主成分;将其作为反向传播神经网络(back propagation neural network,BPNN)模型的输入层,建立基于PCA-BPNN算法的滆湖组黏性土抗剪强度预测模型。结果表明:当主成分数量为3时,主成分累计贡献率达93.4%;第一、二主成分贡献率分别为52.1%和36.6%;PCA算法即保留了样本大部分信息,又实现了对多维变量的降维。第一主成分可归纳为土体孔隙特性,与黏聚力和内摩擦角均呈负相关关系;第二主成分可归纳为土体水稳性,与黏聚力和内摩擦角均呈正相关关系;土体孔隙特性越显著,水稳性越弱,抗剪强度越低。建立了滆湖组黏性土抗剪强度参数PCA-BPNN预测模型,模型抗剪强度拟合优度为0.85,内摩擦角拟合优度为0.72;模型可靠性总体较高。可见PCA-BPNN预测模型即可降低解释变量间的多重共线性,简化了模型,又能够提升模型的泛化能力;为运用数学方法研究土体工程地质参数提供了参考。 展开更多
关键词 主成分分析(PCA) 传播神经网络(bpnn) 滆湖组黏性土 抗剪强度 预测模型
在线阅读 下载PDF
基于参数优化神经网络的海底油气管道腐蚀泄漏预测 被引量:16
9
作者 鲁中歧 肖文生 +3 位作者 崔俊国 张杨 王魁涛 尹丰 《科学技术与工程》 北大核心 2022年第20期8673-8682,共10页
为有效预测海底管道因腐蚀导致的泄漏风险,提出了一种海底管道腐蚀泄漏预测模型,首先采用斯皮尔曼相关系数分析各影响因素间的相关性,随后基于随机森林袋外数据进行各因素的重要性排序,剔除掉相关性较高且重要性较小的因素,利用筛选出... 为有效预测海底管道因腐蚀导致的泄漏风险,提出了一种海底管道腐蚀泄漏预测模型,首先采用斯皮尔曼相关系数分析各影响因素间的相关性,随后基于随机森林袋外数据进行各因素的重要性排序,剔除掉相关性较高且重要性较小的因素,利用筛选出的数据建立前馈神经网络和随机森林回归预测模型,并利用粒子群算法对神经网络预测模型的权值、阈值进行了优化,构建粒子群优化下的神经网络预测模型。分析结果表明:神经网络预测模型在5组随机模型训练中平均绝对误差(mean absolute error, MAE)、均方误差(mean square error, MSE)的平均值分别为1.59、 3.37,均高于随机森林回归预测模型,说明该模型误差较大,但决定系数R~2较随机森林回归预测模型高0.13,因决定系数越接近于1,模型拟合越好,故随机森林回归预测模型较神经网络预测模型拟合度较差,长期预测误差较高,因此可采用粒子群算法对神经网络进行优化,优化后的模型MAE为0.79,MSE为0.729 3,R~2为0.915 1,可见优化后的神经网络预测模型在保证精度的基础上提高了稳定性,预测效果更优。最后编制了集随机森林回归、神经网络及粒子群优化下的神经网络为一体的多模型管道腐蚀预测软件。为海底管道泄漏风险的精准预测以及高效控制提供了依据,在海洋油气运输安全方面具有重要意义。 展开更多
关键词 海底管道腐蚀预测 斯皮尔曼相关系数 随机森林回归(RFR) 传播神经网络(bpnn) 粒子群优化
在线阅读 下载PDF
基于神经网络的无线信道场景识别 被引量:2
10
作者 樊圆圆 刘留 +3 位作者 张嘉驰 李慧婷 周涛 唐盼 《电波科学学报》 CSCD 北大核心 2021年第2期208-215,共8页
无线信道场景识别对于无线资源调度和系统性能的优化等具有重要意义.文中基于QuaDriGa平台研究了反向传播神经网络(back propagation neural network,BPNN)和卷积神经网络(convolutional neural networks,CNN)在无线信道场景识别中的应... 无线信道场景识别对于无线资源调度和系统性能的优化等具有重要意义.文中基于QuaDriGa平台研究了反向传播神经网络(back propagation neural network,BPNN)和卷积神经网络(convolutional neural networks,CNN)在无线信道场景识别中的应用.首先,利用QuaDriGa生成不同场景下的信道冲激响应(channel impulse response,CIR),并提取时延扩展、角度扩展等信道参数.然后,对于BPNN,直接利用其对不同场景的参数进行训练;对于CNN,需要经过"抽头移动、数量级微调、自相关"等操作将一维的CIR转化为二维图像再进行训练.最后,计算识别准确率并利用K折交叉验证该两种模型的泛化能力.结果表明,CNN比BPNN识别精度高,但BPNN识别效率更高,二者均可用于未来信道场景的智能感知和识别. 展开更多
关键词 信道场景识别 信道仿真 QuaDriGa 传播神经网络(bpnn) 卷积神经网络(CNN)
在线阅读 下载PDF
结合颅骨形态特征与神经网络的民族判别 被引量:1
11
作者 孙慧杰 赵俊莉 +3 位作者 郑鑫 热孜万古丽·夏米西丁 李奕 周明全 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第3期641-649,共9页
针对颅骨民族判别问题,提出结合颅骨形态特征与神经网络的判别方法,可以推进法医人类学的发展,加快探索民族发展历程。首先,根据颅骨形态学相关研究,提取36个维吾尔族和汉族颅骨数据的几何特征;其次,采用反向传播神经网络(BPNN)对特征... 针对颅骨民族判别问题,提出结合颅骨形态特征与神经网络的判别方法,可以推进法医人类学的发展,加快探索民族发展历程。首先,根据颅骨形态学相关研究,提取36个维吾尔族和汉族颅骨数据的几何特征;其次,采用反向传播神经网络(BPNN)对特征向量进行民族判别,并通过Adam算法对网络进行优化,避免陷入局部最优值,添加正则化项保证算法稳定性;最后,分别采用2种网络结构进行对比实验,输入层、隐藏层和输出层的神经元个数分别为36、6、2和36、12、2,并设置不同初始学习率进行对比实验。结果表明:隐藏层神经元个数为12、学习率为0.0001时,分类精度最高,测试阶段平均准确率最高为97.5%。为了验证所提方法的普适性,生成116例国外颅骨数据进行实验,测试阶段平均准确率为90.96%。相比较于支持向量机(SVM)、决策树、KNN、Fisher等机器学习方法,所提方法学习能力更强且分类精度有明显提升。 展开更多
关键词 颅骨形态特征 传播神经网络(bpnn) 颅骨民族判别 机器学习 Adam算法
在线阅读 下载PDF
基于SD-BPNN法的矿工安全生产责任压力演化建模与仿真
12
作者 陈铁华 刘瑞康 李红霞 《中国安全科学学报》 北大核心 2025年第9期70-77,共8页
为提高煤矿企业安全生产管理的科学性和有效性,以矿工安全生产责任压力为主题进行建模与仿真研究。根据矿工安全生产责任压力量表构建系统动力学(SD)因果反馈图,并收集问卷数据;基于Matlab 2023b软件的神经网络拟合工具,构建反映自变量... 为提高煤矿企业安全生产管理的科学性和有效性,以矿工安全生产责任压力为主题进行建模与仿真研究。根据矿工安全生产责任压力量表构建系统动力学(SD)因果反馈图,并收集问卷数据;基于Matlab 2023b软件的神经网络拟合工具,构建反映自变量与因变量关系的反向传播神经网络(BPNN);通过Simulink平台构建系统流图,进而进行动态仿真与情景模拟。研究结果表明:矿工安全生产责任压力及其各维度压力随时间呈现不断扩大趋势;压力源独立作用时,惩罚担忧发挥主导作用,压力源同步作用时,认知压力维度呈现非线性抑制;在压力管理过程中,应注重多维度压力源的综合考量与平衡调整,从而提升煤矿企业安全生产管理体系的效能。 展开更多
关键词 系统动力学(SD) 传播神经网络(bpnn) 矿工 安全生产责任压力 情景模拟
在线阅读 下载PDF
改进SSA优化BPNN的煤体瓦斯渗透率预测模型
13
作者 汪伟 崔欣超 +3 位作者 祁云 李绪萍 王璜瑞 齐庆杰 《中国安全科学学报》 北大核心 2025年第2期137-143,共7页
为更加精确地预测煤体瓦斯渗透率,进而保障煤矿安全生产,构建基于改进麻雀搜索算法(ISSA)优化反向传播神经网络(BPNN)的煤体瓦斯渗透率预测模型。首先,通过引入Sine混沌映射和高斯变异改进麻雀搜索算法(SSA),以增强其全局搜索能力和局... 为更加精确地预测煤体瓦斯渗透率,进而保障煤矿安全生产,构建基于改进麻雀搜索算法(ISSA)优化反向传播神经网络(BPNN)的煤体瓦斯渗透率预测模型。首先,通过引入Sine混沌映射和高斯变异改进麻雀搜索算法(SSA),以增强其全局搜索能力和局部寻优精度,从而优化BPNN的权值和阈值配置;然后,通过皮尔逊相关系数矩阵和核主成分分析(KPCA)处理瓦斯渗透率影响因素的数据,以提高模型的计算效率和准确性,并以累积方差达88.59%的3个主成分提取为模型输入,渗透率作为输出进行试验;最后,将该模型应用于山西某煤矿进行实例验证。结果表明:ISSA-BPNN在平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和决定系数R^(2)等4个指标上优于粒子群算法(PSO)优化BPNN、PSO优化支持向量机(PSO-SVM)、PSO优化最小二乘支持向量机(LSSVM)及SSA优化BPNN(SSA-BPNN)模型,且相较于其他模型在测试样本中的平均绝对误差(MAE)分别降低0.0327、0.022、0.0179、0.0182;MAPE分别降低5.15%、3.14%、2.76%、2.36%;RMSE分别降低0.0316、0.0279、0.0188、0.0222;R^(2)分别提高0.0775、0.0658、0.0401、0.0493;实例验证表明模型可靠性和稳定性较高。 展开更多
关键词 改进麻雀搜索算法(ISSA) 传播神经网络(bpnn) 煤体瓦斯 渗透率 预测模型
在线阅读 下载PDF
基于MPA-BPNN和ARIMA的港口货物吞吐量预测
14
作者 戴红伟 王博文 《上海海事大学学报》 北大核心 2025年第3期95-103,共9页
为提高港口货物吞吐量预测的准确性,分别构建由海洋捕食者算法(marine predators algorithm,MPA)优化的反向传播神经网络(back-propagation neural network,BPNN)预测模型(记为MPA-BPNN模型)和自回归综合移动平均(autoregressive integr... 为提高港口货物吞吐量预测的准确性,分别构建由海洋捕食者算法(marine predators algorithm,MPA)优化的反向传播神经网络(back-propagation neural network,BPNN)预测模型(记为MPA-BPNN模型)和自回归综合移动平均(autoregressive integrated moving average,ARIMA)预测模型。在灰色关联分析和Spearman相关分析的基础上,利用MPA-BPNN模型对宁波港港口货物吞吐量进行预测。对时间序列进行平稳性检验和自相关检验后,利用ARIMA模型对宁波港港口货物吞吐量进行预测。分别以2021—2022年、2015—2022年为预测区间,比较BPNN、MPA-BPNN和ARIMA模型的预测效果。结果表明:地区生产总值等因素对宁波港港口货物吞吐量具有重要显著影响;MPA-BPNN模型具有一定的寻优能力,其预测准确性比BPNN的高;在数据序列整体波动不剧烈的情况下,短期预测更适用ARIMA模型,中长期预测更适用神经网络模型。 展开更多
关键词 港口货物吞吐量预测 传播神经网络(bpnn) 海洋捕食者算法(MPA) 自回归综合移动平均(ARIMA)
在线阅读 下载PDF
基于PSO-LSSVM-BP模型的高边坡力学参数反分析及稳定性评价 被引量:7
15
作者 徐卫亚 陈世壮 +5 位作者 张贵科 胡明涛 黄威 许晓逸 张海龙 王如宾 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期52-59,共8页
基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)算法构建非线性映射关系,结合反向传播(BP)神经网络对非线性映射关系生成的数据库进行机器学习,构建了PSO-LSSVM-BP模型确定最优岩体力学参数。PSO-LSSVM-BP模型以高边坡监测位移数... 基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)算法构建非线性映射关系,结合反向传播(BP)神经网络对非线性映射关系生成的数据库进行机器学习,构建了PSO-LSSVM-BP模型确定最优岩体力学参数。PSO-LSSVM-BP模型以高边坡监测位移数据作为输入信息,通过反分析获得高边坡岩体力学参数,将反分析参数用于FLAC3D位移数值计算,结果表明模拟结果与监测数据吻合较好,验证了该模型的可行性和有效性。基于PSO-LSSVM-BP模型,对不同蓄水位下两河口水电站进水口高边坡稳定性进行了评价,发现水位是影响边坡稳定性的主要因素,随着水位上升,边坡位移逐渐增大,其表面和断层处损伤程度加深,边坡局部点安全系数有所下降,但整体点安全系数均大于1.30,有一定安全裕度。 展开更多
关键词 高边坡 力学参数分析 粒子群优化 最小二乘向量机 传播神经网络 两河口水电站
在线阅读 下载PDF
基于ADASYN数据平衡化的PSO-BPNN变压器套管故障诊断 被引量:7
16
作者 杨昊 胡文秀 +3 位作者 张璐 陈晋鹏 周思佳 赵思瑞 《电力工程技术》 北大核心 2024年第2期170-178,共9页
变压器套管作为设备重要的绝缘部件,其绝缘性能直接影响着设备的安全运行。为诊断变压器套管绝缘状态,改善变压器套管油中溶解气体的小样本不平衡数据对变压器套管故障诊断结果的影响,使用粒子群优化结合反向传播神经网络(particle swar... 变压器套管作为设备重要的绝缘部件,其绝缘性能直接影响着设备的安全运行。为诊断变压器套管绝缘状态,改善变压器套管油中溶解气体的小样本不平衡数据对变压器套管故障诊断结果的影响,使用粒子群优化结合反向传播神经网络(particle swarm optimization combined with back propagation neural network,PSO-BPNN)和自适应综合过采样(adaptive synthetic sampling,ADASYN)算法对变压器套管进行故障诊断。首先收集变压器套管的历史故障数据,建立具有明确故障类别的变压器套管油中溶解气体样本集,并通过ADASYN算法对原始数据中的少数类样本进行合成,得到平衡后的故障数据,然后将平衡后的油中溶解气体作为模型输入,故障状态作为标签输出,通过PSO-BPNN模型对变压器套管进行诊断,最后在原始样本集下使用反向传播神经网络(back propagation neural network,BPNN)、遗传结合反向传播神经网络(genetic combined with back propagation neural network,G-BPNN)算法、布谷鸟搜索结合反向传播神经网络(cuckoo search combined with back propagation neural network,CS-BPNN)算法以及PSO-BPNN模型对套管进行诊断。结果表明,针对变压器油纸套管绝缘状态进行故障诊断的多个模型中,基于ADASYN平衡数据后的PSO-BPNN模型和其他模型相比准确度最高,能有效减小小样本不平衡数据对诊断结果的影响,为判断变压器油纸套管绝缘性能提供了有效方法。 展开更多
关键词 变压器套管 故障诊断 油中溶解气体 传播神经网络(bpnn) 不平衡数据 自适应综合过采样(ADASYN)
在线阅读 下载PDF
基于MCDM-BPNN的城市内涝风险评价及调蓄池选址
17
作者 郝景开 李红艳 +3 位作者 张峰 张翀 毛立波 刘大为 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期214-221,共8页
为建立一套较为完善的城市内涝风险评价体系,并据此确定调蓄池位置,首先,从积水风险、超载风险和边侧进流量3个维度构建评价指标,设计一种包括改进层次分析法(IAHP)、反熵权法(AEW)和优劣解距离法(TOPSIS)的混合多准则决策框架(MCDM);然... 为建立一套较为完善的城市内涝风险评价体系,并据此确定调蓄池位置,首先,从积水风险、超载风险和边侧进流量3个维度构建评价指标,设计一种包括改进层次分析法(IAHP)、反熵权法(AEW)和优劣解距离法(TOPSIS)的混合多准则决策框架(MCDM);然后,将IAHP-AEW-TOPSIS模型分别与IAHP-TOPSIS、AEW-TOPSIS模型对比,通过斯皮尔曼排序相关系数验证排序一致性,通过计算变异系数、相对极差和灵敏度证实IAHP-AEW-TOPSIS模型的性能;最后,结合反向传播神经网络(BPNN),建立MCDM-BPNN模型,并以山西省某一内涝易发区域为例进行验证。结果表明:积水风险对城市内涝风险评价体系的影响最为显著,所占权重为0.46,其次为超载风险,所占权重为0.36;节点位置与连接管道数量很大程度上对该节点的内涝风险产生影响,在管道汇接处或汇流面积较大处内涝出现更为频繁;IAHP-AEW-TOPSIS模型在样本判别方面具有更好的性能;在5年与10年重现期下,MCDM-BPNN模型验证集准确率分别为93.3%和100%,能够准确快速模拟和预测城市洪水;应用案例设置调蓄池后,高、中、低风险节点数量分别为7、9、30和6、19、21,内涝溢流削减效果显著。 展开更多
关键词 多准则决策框架(MCDM) 传播神经网络(bpnn) 城市内涝 风险评价 调蓄池
在线阅读 下载PDF
APSO-BPNN模型在滨海环境中铁质材料腐蚀速率预测中的应用
18
作者 杨彪 肖佳 +2 位作者 欧阳晨 朱金晨 闫莹 《腐蚀与防护》 CAS CSCD 北大核心 2024年第12期72-79,共8页
针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了... 针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了APSO-BPNN模型与传统BPNN模型的预测效果。结果表明:APSO-BPNN模型在训练集上的决定系数R_(2)提高了23.65%,其在测试集上的R2达到0.9258,平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别下降至11.55、22.26%和14.43。 展开更多
关键词 铁质材料 自适应粒子群优化(APSO)算法 传播神经网络(bpnn) 腐蚀速率 预测模型
在线阅读 下载PDF
基于SBAS-InSAR和BPNN的铀尾矿坝形变智能监测与预测 被引量:4
19
作者 周怡 彭国文 +3 位作者 黄召 阳鹏飞 刘丹丹 陈小丽 《中国安全科学学报》 CAS CSCD 北大核心 2024年第4期145-152,共8页
为提高铀尾矿库退役治理的监测工作效率,提出一个基于小基线合成孔径雷达干涉测量(SBAS-InSAR)技术和反向传播神经网络(BPNN)的铀尾矿库形变智能监测与预测模型。首先,利用SBAS-InSAR技术得到铀尾矿库2020年12月—2022年12月的累计形变... 为提高铀尾矿库退役治理的监测工作效率,提出一个基于小基线合成孔径雷达干涉测量(SBAS-InSAR)技术和反向传播神经网络(BPNN)的铀尾矿库形变智能监测与预测模型。首先,利用SBAS-InSAR技术得到铀尾矿库2020年12月—2022年12月的累计形变量与年均形变速率,并用第一拦水坝的7个全球导航卫星系统(GNSS)监测站验证InSAR监测值的精度;然后,选取铀尾矿库中的雷公塘坝、南坡横坝、战斗坝和松林坝4个坝段的累计沉降量并结合降雨量进行沉降分析;最后,随机提取铀尾矿坝100个沉降点的累积沉降数据,通过BPNN预测铀尾矿坝的形变。结果表明:2年间铀尾矿库的形变速率在-60.06~34.94 mm/a,铀尾矿坝整体处于下沉状态,累计沉降量最大为-46.67 mm。BPNN预测值与实际监测值的平均绝对误差为0.586 mm,均方误差为0.624 mm。 展开更多
关键词 小基线合成孔径雷达干涉测量(SBAS-InSAR) 传播神经网络(bpnn) 铀尾矿库 形变智能监测 Sentinel-1A
在线阅读 下载PDF
大型靶目标粒子辐照蒙特卡罗计算后处理方法
20
作者 胡友涛 范杰清 +6 位作者 赵强 王浩洋 张芳 张硕 崔雅萍 郝建红 董志伟 《强激光与粒子束》 北大核心 2025年第1期98-106,共9页
蒙特卡罗(Monte Carlo,MC)方法是辐照损伤、辐照屏蔽研究中应用最广泛的方法之一。在对机场、铁路、舰船等大型靶目标开展辐照损伤研究时,通常关注靶目标的3D建模及辐照计算,而对计算后的数据分析多采用人工方式,工作难度大、效率低,成... 蒙特卡罗(Monte Carlo,MC)方法是辐照损伤、辐照屏蔽研究中应用最广泛的方法之一。在对机场、铁路、舰船等大型靶目标开展辐照损伤研究时,通常关注靶目标的3D建模及辐照计算,而对计算后的数据分析多采用人工方式,工作难度大、效率低,成为制约相关研究的技术瓶颈。开展靶目标粒子辐照MC计算可视化后处理方法研究,建立了基于KD树(k-dimensional tree,KDtree)+反距离加权(inverse distance weight,IDW)和基于遗传算法优化反向传播(genetic algorithm based backpropagation,GABP)神经网络的后处理模型,实现了数据与模型结合的可视化分析。与传统数据分析方法相比,提出的方法能够大幅减低研究人员工作难度,提升数据处理速度,实现辐照效应直观展示,提升辐照效应研究后处理工作效率。 展开更多
关键词 粒子辐照 遗传算法 传播神经网络 KD树 距离加权 后处理
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部