期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
基于双隐层动态递归神经网络的航煤比重软测量 被引量:1
1
作者 曾文华 《仪器仪表学报》 EI CAS CSCD 北大核心 2002年第3期261-264,共4页
针对原油蒸馏装置常压塔航煤比重模型具有动态特性的特点 ,提出采用双隐层动态递归神经网络 (DRNN)实现比重的软测量 ,推导了双隐层 DRNN的权值学习算法 ,并利用在线比重分析仪构成了航煤比重软测量模型的在线校正。在某炼油厂常压塔装... 针对原油蒸馏装置常压塔航煤比重模型具有动态特性的特点 ,提出采用双隐层动态递归神经网络 (DRNN)实现比重的软测量 ,推导了双隐层 DRNN的权值学习算法 ,并利用在线比重分析仪构成了航煤比重软测量模型的在线校正。在某炼油厂常压塔装置实际投用表明 ,基于双隐层 DRNN比重软测量模型具有较高的测量精度。 展开更多
关键词 双隐层动态递归神经网络 常压塔 航煤比重 软测量 在线校正
在线阅读 下载PDF
应用递推神经网络的传感器动态建模研究 被引量:13
2
作者 田社平 姜萍萍 颜国正 《仪器仪表学报》 EI CAS CSCD 北大核心 2004年第5期574-576,共3页
根据动态校准实验结果建立传感器的动态数学模型 ,以研究传感器的动态性能 ,是动态测试的一个重要内容。研究了递归神经网络模型在传感器动态建模中的应用。递归神经网络模型采用具有输入层、中间层、输出层的三层网络结构 ,整个网络的... 根据动态校准实验结果建立传感器的动态数学模型 ,以研究传感器的动态性能 ,是动态测试的一个重要内容。研究了递归神经网络模型在传感器动态建模中的应用。递归神经网络模型采用具有输入层、中间层、输出层的三层网络结构 ,整个网络的特性决定于相邻层间的连接权。采用递推预报误差算法训练神经网络 ,具有收敛速度快、收敛精度高的特点。由于其反馈特征 ,使得递归神经网络模型能获取系统的动态响应特性。该方法特别适用于传感器非线性动态建模 ,而且避免了传感器模型阶次的选择的困难。试验结果表明 。 展开更多
关键词 归神经网络 传感器 动态建模 推预报误差算法 连接权 动态响应特性 模型 训练 获取 实验结果
在线阅读 下载PDF
基于动态递归模糊神经网络的自适应电液位置跟踪系统 被引量:15
3
作者 张友旺 桂卫华 赵泉明 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第4期551-556,共6页
提出了动态递归模糊神经网络(DRFNN)以在线估计电液位置跟踪系统中包括非线性、参数不确定性、负载干扰等在内的未知动态非线性函数,基于lyapunov稳定性理论推导出DRFNN可调参数和估计误差的界的自适应律,并构造出稳定的自适应控制器.... 提出了动态递归模糊神经网络(DRFNN)以在线估计电液位置跟踪系统中包括非线性、参数不确定性、负载干扰等在内的未知动态非线性函数,基于lyapunov稳定性理论推导出DRFNN可调参数和估计误差的界的自适应律,并构造出稳定的自适应控制器.实验结果表明:基于DRFNN的自适应控制器可使电液位置跟踪系统具有较强的鲁棒性和满意的跟踪性能. 展开更多
关键词 动态递归模糊神经网络 电液位置跟踪系统 变结构控制 鲁棒性
在线阅读 下载PDF
简单动态递归神经网络在非线性系统辨识中的应用 被引量:8
4
作者 杜云 田强 +2 位作者 杜艳 张苏英 王畅 《河北科技大学学报》 CAS 北大核心 2009年第2期130-134,179,共6页
提出了用一种结构非常简单的动态递归神经网络(SRNN)辨识非线性系统的方法。该方法研究了在递归层不加权的网络简单拓扑结构,推导出SRNN的预报误差(RPE)学习算法,并对算法进行了补充和改进。仿真实验结果表明,这种网络需要调整的权系值... 提出了用一种结构非常简单的动态递归神经网络(SRNN)辨识非线性系统的方法。该方法研究了在递归层不加权的网络简单拓扑结构,推导出SRNN的预报误差(RPE)学习算法,并对算法进行了补充和改进。仿真实验结果表明,这种网络需要调整的权系值少,且改进后的学习算法简单、辨识速度快、模型精度高,解决了一般动态递归网络因网络拓扑结构复杂造成的训练算法复杂、收敛速度慢的问题,可以实时应用。 展开更多
关键词 动态归神经网络 系统辨识 非线性系统 RPE算法
在线阅读 下载PDF
基于动态递归模糊神经网络盲均衡算法的研究 被引量:8
5
作者 张朝霞 海振宏 王华奎 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第2期539-541,共3页
模糊系统和神经网络已广泛应用于系统的辨识和控制,但是传统的模糊神经网络是一种静态映射,不适用于动态系统的辨识;而由于无线通信信道的时变性和不确定性,决定了盲均衡器本身就是一个动态的均衡过程,所以研究利用动态递归模糊神经网... 模糊系统和神经网络已广泛应用于系统的辨识和控制,但是传统的模糊神经网络是一种静态映射,不适用于动态系统的辨识;而由于无线通信信道的时变性和不确定性,决定了盲均衡器本身就是一个动态的均衡过程,所以研究利用动态递归模糊神经网络的盲均衡算法是可行的,而且也是必要的。仿真结果表明:由于动态模糊神经网络的均衡过程同时利用了系统的当前数据和历史数据,对动态系统的均衡,较传统神经网络在均衡的精度和稳定性方面具有更好的效果。 展开更多
关键词 动态递归 模糊神经网络 盲均衡 隶属函数
在线阅读 下载PDF
基于动态递归神经网络的超磁致伸缩驱动器精密位移控制 被引量:11
6
作者 曹淑瑛 郑加驹 +2 位作者 王博文 黄文美 颜威利 《中国电机工程学报》 EI CSCD 北大核心 2006年第3期106-111,共6页
由于内在的滞回非线性,超磁致伸缩驱动器(GMA)会在开环系统中引起定位误差,在闭环系统中造成系统不稳定。为了克服这个问题,将动态递归神经网络(DRNN)前馈和PD反馈控制器相结合,提出了一种实时滞回补偿控制策略,以期实现GMA的精密位移... 由于内在的滞回非线性,超磁致伸缩驱动器(GMA)会在开环系统中引起定位误差,在闭环系统中造成系统不稳定。为了克服这个问题,将动态递归神经网络(DRNN)前馈和PD反馈控制器相结合,提出了一种实时滞回补偿控制策略,以期实现GMA的精密位移跟踪控制。DRNN控制器是根据GMA的滞回特性构造的,通过反馈误差学习方案在线学习GMA的逆滞回模型。仿真结果表明该控制策略能适应GMA滞回特性随机械负载、输入信号的变化,在线建立GMA的滞回逆模型,从而消除滞回非线性的影响,实现GMA的精密控制。 展开更多
关键词 超磁致伸缩驱动器 滞回非线性 反馈误差学习 动态归神经网络 实时补偿控制
在线阅读 下载PDF
自组织递归区间二型模糊神经网络在动态时变系统辨识中的应用 被引量:9
7
作者 李迪 陈向坚 +2 位作者 续志军 杨帆 牛文达 《光学精密工程》 EI CAS CSCD 北大核心 2011年第6期1406-1413,共8页
针对动态时变系统辨识过程中存在噪声干扰的问题,本文将区间二型模糊集结合到递归神经网络中,提出了自组织递归区间二型模糊神经网络以增强动态时变系统的抗噪能力。该自组织递归区间二型模糊神经网络由前件和后件两部分构成:前件为区... 针对动态时变系统辨识过程中存在噪声干扰的问题,本文将区间二型模糊集结合到递归神经网络中,提出了自组织递归区间二型模糊神经网络以增强动态时变系统的抗噪能力。该自组织递归区间二型模糊神经网络由前件和后件两部分构成:前件为区间二型模糊集模型,用于将每个规则的激活强度反馈到自身构成内反馈回路,其参数学习采用梯度下降算法;后件为带有区间权值的Takagi-Sugeno-Kang(TSK)模型,其参数学习采用有序规则卡尔曼滤波算法,且网络初始规则数为零。所有规则均通过结构学习和前后件参数同时在线学习来产生,其网络结构学习采用的是在线区间二型模糊群集。为验证提出的神经网络的优越性,将其应用到单输入单输出动态时变系统的辨识中。实验结果表明,相对于前馈一型/二型模糊神经网络、递归一型模糊神经网络,该神经网络的辨识能力强,即使在存在白噪声的条件下,也能减小测试及训练误差。 展开更多
关键词 自组织递归区间 二型模糊神经网络 卡尔曼滤波 梯度下降法 噪声干扰 动态时变系统辨识
在线阅读 下载PDF
基于动态递归神经网络的木材干燥模型辨识 被引量:12
8
作者 张冬妍 胡昆仑 赵真非 《森林工程》 北大核心 2003年第6期10-12,共3页
木材干燥是一个复杂的非线性系统 ,由于木材结构复杂且具有多样性和变异性 ,因此要建立一个理想的符合木材干燥过程的模型是很困难。本文利用动态递归神经网络的特点 ,提出了基于动态递归神经网络的木材干燥模型辨识方法 ,给出了动态递... 木材干燥是一个复杂的非线性系统 ,由于木材结构复杂且具有多样性和变异性 ,因此要建立一个理想的符合木材干燥过程的模型是很困难。本文利用动态递归神经网络的特点 ,提出了基于动态递归神经网络的木材干燥模型辨识方法 ,给出了动态递归状态 -输出神经网络的结构和学习算法。并通过对辨识得到的模型的仿真结果 。 展开更多
关键词 动态归神经网络 木材干燥 辨识 仿真 状态-输出模型
在线阅读 下载PDF
基于递归小波神经网络的非线性动态系统仿真 被引量:14
9
作者 赵凤遥 马震岳 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第7期1453-1455,1539,共4页
为提高动态递归神经网络的动态系统仿真能力,在Elman神经网络的基础上,提出动态递归小波神经网络(RWNN),给出了其动态梯度下降算法,并将其成功应用于非线性动态系统仿真。仿真算例表明,该网络具有收敛快,精度高等优点,仿真效果很好,同... 为提高动态递归神经网络的动态系统仿真能力,在Elman神经网络的基础上,提出动态递归小波神经网络(RWNN),给出了其动态梯度下降算法,并将其成功应用于非线性动态系统仿真。仿真算例表明,该网络具有收敛快,精度高等优点,仿真效果很好,同时具有较好的泛化性能,具有广阔的应用前景。 展开更多
关键词 ELMAN神经网络 递归小波神经网络(RWNN) 梯度下降算法 非线性动态系统 仿真
在线阅读 下载PDF
基于动态递归神经网络的HCCI发动机燃烧相位辨识模型 被引量:5
10
作者 谢辉 孙艳辉 夏超英 《内燃机学报》 EI CAS CSCD 北大核心 2007年第4期352-357,共6页
为了实现HCCI汽油机闭环反馈控制,提出了一种利用动态递归神经网络从气缸压力信号在线辨识燃烧相位CA50(燃烧50%累积放热量的曲轴转角)的方法。该方法采集上止点附近40°CA范围的气缸压力信号,经过归一化和主元素法降维处理后,得到... 为了实现HCCI汽油机闭环反馈控制,提出了一种利用动态递归神经网络从气缸压力信号在线辨识燃烧相位CA50(燃烧50%累积放热量的曲轴转角)的方法。该方法采集上止点附近40°CA范围的气缸压力信号,经过归一化和主元素法降维处理后,得到一个由9个特征数构成的时间序列。一个Elman动态递归神经网络以该序列为输入,计算出燃烧相位CA50。以基于全可变气门机构的汽油HCCI发动机为对象,选取了台架试验中4个典型的HCCI动态变负荷过程数据,其中一个作为训练样本,另外3个作为测试样本。测试结果表明:该方法对HCCI动态过程的燃烧相位CA50预测误差小于0.25°CA;与BP网络和RBF网络相比,具有更低的误差和更强的泛化能力;与直接热力学计算方法相比,具有突出的抗干扰性和容错能力。 展开更多
关键词 HCCI汽油机 燃烧相位观测 动态归神经网络
在线阅读 下载PDF
递归神经网络的RPE算法及其在非线性动态系统建模中的应用 被引量:7
11
作者 李鸿儒 顾树生 邓长辉 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2000年第6期590-593,共4页
针对递归神经网络BP学习算法收敛慢的缺陷 ,通过引入递推预报误差 (RPE)学习算法 ,提出一种新的递归神经网络快速学习算法·该算法的基本原理是沿着指标函数的Gauss Newton搜索方向修正权值 ,同时不必计算二阶偏导数和进行矩阵求逆... 针对递归神经网络BP学习算法收敛慢的缺陷 ,通过引入递推预报误差 (RPE)学习算法 ,提出一种新的递归神经网络快速学习算法·该算法的基本原理是沿着指标函数的Gauss Newton搜索方向修正权值 ,同时不必计算二阶偏导数和进行矩阵求逆运算·仿真结果表明 ,该算法比传统的递归BP学习算法具有更快的收敛速度 。 展开更多
关键词 归神经网络 推预报误差 非线性动态系统 系统建模
在线阅读 下载PDF
基于自结构动态递归模糊神经网络的无人机姿态控制 被引量:3
12
作者 陈向坚 白越 +1 位作者 续志军 李迪 《计算机应用研究》 CSCD 北大核心 2011年第9期3387-3389,共3页
针对无人机非线性、强耦合等特点,提出了基于该自结构动态递归模糊神经网络的姿态控制系统,给出了基于Lyapunov函数的系统稳定性证明。对四层模糊神经网络进行了优化和改进,设计了自结构动态递归模糊神经网络,该网络可以根据系统状态在... 针对无人机非线性、强耦合等特点,提出了基于该自结构动态递归模糊神经网络的姿态控制系统,给出了基于Lyapunov函数的系统稳定性证明。对四层模糊神经网络进行了优化和改进,设计了自结构动态递归模糊神经网络,该网络可以根据系统状态在线更新权值、创建/删除节点、优化网络结构。仿真表明:该控制方法的突出优点是,在兼顾考虑了系统中的不确定性因素、非线性因素及外部干扰并存的情况下,保证系统的稳定性和跟踪性能;同时此网络结构比固定结构的模糊神经网络响应速度快,因此更具优越性。 展开更多
关键词 自结构动态递归模糊神经网络 优化网络结构 响应速度快
在线阅读 下载PDF
基于状态延迟动态递归神经网络的机器人动态自适应跟踪辨识(英文) 被引量:4
13
作者 姜春福 余跃庆 《自动化学报》 EI CSCD 北大核心 2003年第5期741-747,共7页
对一种在Elman动态递归网络基础上发展而来的复合输入动态递归网络 (CIDRNN)作了改进 ,提出一种新的动态递归神经网络结构 ,称为状态延迟动态递归神经网络 (StateDelayInputDynamicalRecurrentNeuralNetwork) .具有这种新的拓扑结构和... 对一种在Elman动态递归网络基础上发展而来的复合输入动态递归网络 (CIDRNN)作了改进 ,提出一种新的动态递归神经网络结构 ,称为状态延迟动态递归神经网络 (StateDelayInputDynamicalRecurrentNeuralNetwork) .具有这种新的拓扑结构和学习规则的动态递归网络 ,不仅明确了各权值矩阵的意义 ,而且使权值的训练过程更为简洁 ,意义更为明确 .仿真实验表明 ,这种结构的网络由于增加了网络输入输出的前一步信息 ,提高了收敛速度 ,增强了实时控制的可能性 .然后将该网络用于机器人未知非线性动力学的辨识中 ,使用辨识实际输出与机理模型输出之间的偏差 ,来识别机理模型或简化模型所丢失的信息 ,既利用了机器人现有的建模方法 ,又可以减小网络运算量 ,提高辨识速度 .仿真结果表明了这种改进的有效性 . 展开更多
关键词 机器人 动态自适应跟踪辨识 状态延迟 动态归神经网络 学习规则 拓扑结构
在线阅读 下载PDF
基于动态T-S递归模糊神经网络的闪速熔炼过程参数软测量 被引量:2
14
作者 彭晓波 桂卫华 +2 位作者 李勇刚 王凌云 陈勇 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第10期2029-2033,共5页
闪速熔炼过程中存在大量多元非线性因素,难以从统计学和机理上确立操作参数。为优化闪速炉的操作参数,建立了动态T-S递归模糊神经网络(DTRFNN)的软测量模型,推导了DTRFNN的权值学习算法。将其应用到某厂铜闪速熔炼过程中的参数软测量上... 闪速熔炼过程中存在大量多元非线性因素,难以从统计学和机理上确立操作参数。为优化闪速炉的操作参数,建立了动态T-S递归模糊神经网络(DTRFNN)的软测量模型,推导了DTRFNN的权值学习算法。将其应用到某厂铜闪速熔炼过程中的参数软测量上,平均精确率达到97%,能为生产操作提供有益的指导。 展开更多
关键词 动态T-S递归模糊神经网络(DTRFNN) BP学习算法 冰铜品位 冰铜温度 渣中铁硅比
在线阅读 下载PDF
基于动态递归神经网络的自适应PID控制 被引量:4
15
作者 吴志敏 李书臣 《控制工程》 CSCD 2004年第3期216-219,共4页
提出一种基于动态递归神经网络的自适应PID控制方案,该控制系统由神经网络辨识器和神经网络控制器组成。辨识器采用单隐层的动态递归神经网络,网络结构为2 4 1;辨识算法为动态BP算法;控制器采用两层线性结构的神经网络,输入为系统偏差... 提出一种基于动态递归神经网络的自适应PID控制方案,该控制系统由神经网络辨识器和神经网络控制器组成。辨识器采用单隐层的动态递归神经网络,网络结构为2 4 1;辨识算法为动态BP算法;控制器采用两层线性结构的神经网络,输入为系统偏差及其一阶、二阶微分,因此具有增量型PID控制结构。应用该控制系统对一非线性时变系统进行仿真研究,仿真结果表明该控制方案不仅具有良好的跟踪特性,而且对系统参数变化具有较强的鲁棒性。 展开更多
关键词 动态归神经网络 自适应PID控制 神经网络辨识器 神经网络控制器 非线性系统 动态BP算法
在线阅读 下载PDF
优化动态递归小波神经网络短期负荷预测模型 被引量:4
16
作者 张智晟 段晓燕 +2 位作者 李伟婕 龚文杰 孙雅明 《电力系统及其自动化学报》 CSCD 北大核心 2009年第5期30-35,共6页
提出了优化动态递归小波神经网络(dynamic recurrent wavelet neural network,DRWNN)短期负荷预测模型。与常规小波神经网络相比,DRWNN有两个关联层,关联层节点起存储网络内部状态的作用;模型构造过程中增强了网络的前馈与反馈联接,形... 提出了优化动态递归小波神经网络(dynamic recurrent wavelet neural network,DRWNN)短期负荷预测模型。与常规小波神经网络相比,DRWNN有两个关联层,关联层节点起存储网络内部状态的作用;模型构造过程中增强了网络的前馈与反馈联接,形成多层次的网络递归。采用分布估计算法和遗传算法相融合对DRWNN进行优化,融合实质是在解空间"宏观"和"微观"两个层面进行寻优,可克服DRWNN陷入局部最小,提高DRWNN的泛化能力。对两类不同负荷系统日、周预测仿真测试,验证了模型能有效提高预测精度。 展开更多
关键词 短期负荷预测 动态递归小波神经网络 分布估计算法 遗传算法
在线阅读 下载PDF
基于递归神经网络的加速度传感器动态特性补偿 被引量:4
17
作者 刘刚 刘学仁 《传感器与微系统》 CSCD 北大核心 2007年第7期70-72,共3页
提出了一种基于递归神经网络的加速度传感器动态性能补偿方法,利用神经网络良好的非线性映射能力,建立传感器的动态逆模型,用实际工作参数训练神经网络,实现对加速度传感器动态特性的补偿。实验结果表明:经过动态补偿后,加速度传感器的... 提出了一种基于递归神经网络的加速度传感器动态性能补偿方法,利用神经网络良好的非线性映射能力,建立传感器的动态逆模型,用实际工作参数训练神经网络,实现对加速度传感器动态特性的补偿。实验结果表明:经过动态补偿后,加速度传感器的系统工作频带得以拓宽,检测信号达到稳态的时间从补偿前的7m s缩短到大约1m s,传感器的动态性能得到明显的改善。 展开更多
关键词 加速度传感器 归神经网络 动态补偿
在线阅读 下载PDF
基于改进动态递归神经网络的发酵过程pH值辩识 被引量:2
18
作者 王章利 谭永红 《控制工程》 CSCD 北大核心 2009年第S2期83-86,共4页
酒精发酵的pH值具有非线性、时变性和动态性。利用常规辩识方法对pH值进行辩识,一方面,无法准确描述其动态特性;另一方面,由于常规神经网络的权值学习是梯度下降法,在训练过程易陷入局部极小,并且训练速度慢。针对这些问题,将改进的动... 酒精发酵的pH值具有非线性、时变性和动态性。利用常规辩识方法对pH值进行辩识,一方面,无法准确描述其动态特性;另一方面,由于常规神经网络的权值学习是梯度下降法,在训练过程易陷入局部极小,并且训练速度慢。针对这些问题,将改进的动态递归神经网络应用于pH值的辩识研究。通过实验验证了该算法不但能体现出发酵过程的动态特性,而且通过在动态递归神经网络的权值学习中引入滤波项,能有效地克服常规网络在权值学习过程中的问题。表明该算法对pH值辩识的有效性。 展开更多
关键词 动态归神经网络 酒精发酵 PH 滤波
在线阅读 下载PDF
基于动态递归神经网络的半主动控制结构响应预测 被引量:8
19
作者 孙作玉 《振动工程学报》 EI CSCD 2000年第3期443-448,共6页
提出了一种多输入多输出分支动态递归神经网络模型 ,利用梯度下降法推导了网络权值调整公式。该模型针对结构控制中结构状态变量、控制变量和外激励荷载对结构的响应有不同的影响 ,采用分支输入递归处理 ,不但结构响应预测精度好 ,而且... 提出了一种多输入多输出分支动态递归神经网络模型 ,利用梯度下降法推导了网络权值调整公式。该模型针对结构控制中结构状态变量、控制变量和外激励荷载对结构的响应有不同的影响 ,采用分支输入递归处理 ,不但结构响应预测精度好 ,而且大大提高了动态网络的学习和训练效率。应用该模型对线性结构和非线性结构在变阻尼控制和外荷载激励下结构的响应进行了数值仿真 ,表明所提的动态递归神经网络可以达到较高的预测精度。 展开更多
关键词 神经网络 结构响应预测 半主动控制 动态递归
在线阅读 下载PDF
动态T-S递归模糊神经网络及其应用 被引量:1
20
作者 彭晓波 桂卫华 +1 位作者 李勇刚 陈勇 《系统仿真学报》 CAS CSCD 北大核心 2009年第18期5636-5638,5644,共4页
提出了动态T-S递归模糊神经网络(DTRFNN)。该网络具有全局收敛特性的递归结构;采用BP算法进行网络权值的学习;并利用Lyapunov定理证明该模型具有全局收敛性,并在此基础上提出了克服局部极小的方法。最后以动态系统的辨识为例,进行实验研... 提出了动态T-S递归模糊神经网络(DTRFNN)。该网络具有全局收敛特性的递归结构;采用BP算法进行网络权值的学习;并利用Lyapunov定理证明该模型具有全局收敛性,并在此基础上提出了克服局部极小的方法。最后以动态系统的辨识为例,进行实验研究,取得了很好的效果,表明DTRFNN动态模型能很好的对动态系统进行辨识。 展开更多
关键词 动态T-S递归模糊神经网络(DTRFNN) BP学习算法 收敛性 学习率
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部