期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于生成对抗和双重语义感知的配电网量测数据缺失重构
被引量:
33
1
作者
杨玉莲
齐林海
+2 位作者
王红
苏林萍
徐永海
《电力系统自动化》
EI
CSCD
北大核心
2020年第18期46-54,共9页
传统的数据缺失重构技术大多依赖数理统计方法和先验知识结合机理分析构建数学模型,但是配电网量测数据具有高维、时变、非线性特征,复杂度高、表征难度大,难以保证高精度重构。文中提出一种利用无监督生成对抗训练方式自主提取数据特...
传统的数据缺失重构技术大多依赖数理统计方法和先验知识结合机理分析构建数学模型,但是配电网量测数据具有高维、时变、非线性特征,复杂度高、表征难度大,难以保证高精度重构。文中提出一种利用无监督生成对抗训练方式自主提取数据特征并结合双重语义感知重构约束实现数据缺失重构的方法。其中,基于二维卷积的重构模型和量测数据二维灰度图像化训练增强了模型泛化能力和稳定性。该方法无需先验知识的分布假设与显式物理建模,在保证数据特征提取最大化的同时,有效提高了重构数据的精确性。最后,利用实测数据验证了该方法在重构缺失数据上的有效性。
展开更多
关键词
生成对抗网络
双重语义感知
量测数据
数据缺失重构
在线阅读
下载PDF
职称材料
题名
基于生成对抗和双重语义感知的配电网量测数据缺失重构
被引量:
33
1
作者
杨玉莲
齐林海
王红
苏林萍
徐永海
机构
华北电力大学控制与计算机工程学院
华北电力大学电气与电子工程学院
出处
《电力系统自动化》
EI
CSCD
北大核心
2020年第18期46-54,共9页
基金
国家自然科学基金资助项目(51277069)
国家电网公司科技项目(52094018001C)。
文摘
传统的数据缺失重构技术大多依赖数理统计方法和先验知识结合机理分析构建数学模型,但是配电网量测数据具有高维、时变、非线性特征,复杂度高、表征难度大,难以保证高精度重构。文中提出一种利用无监督生成对抗训练方式自主提取数据特征并结合双重语义感知重构约束实现数据缺失重构的方法。其中,基于二维卷积的重构模型和量测数据二维灰度图像化训练增强了模型泛化能力和稳定性。该方法无需先验知识的分布假设与显式物理建模,在保证数据特征提取最大化的同时,有效提高了重构数据的精确性。最后,利用实测数据验证了该方法在重构缺失数据上的有效性。
关键词
生成对抗网络
双重语义感知
量测数据
数据缺失重构
Keywords
generative adversarial network
double semantic perception
measurement data
missing data reconstruction
分类号
TM76 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于生成对抗和双重语义感知的配电网量测数据缺失重构
杨玉莲
齐林海
王红
苏林萍
徐永海
《电力系统自动化》
EI
CSCD
北大核心
2020
33
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部