期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于双重竞争策略的学习自动机算法 被引量:1
1
作者 狄冲 齐开悦 +2 位作者 吴越 苏宇 李生红 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第10期1292-1297,1313,共7页
学习自动机是增强学习理论体系中的重要组成部分,在应用数学的随机函数优化、信息安全的异常检测等理论和实际问题中发挥着重要作用.估计器算法是目前学习自动机中最为主流的一类算法,具有最高的算法性能.但是,由于估计器本身的局限性... 学习自动机是增强学习理论体系中的重要组成部分,在应用数学的随机函数优化、信息安全的异常检测等理论和实际问题中发挥着重要作用.估计器算法是目前学习自动机中最为主流的一类算法,具有最高的算法性能.但是,由于估计器本身的局限性导致在学习初期估计值不准确,行为选择概率向量无法一直保持最优更新,且概率向量的更新完全依赖于固定步长,一次错误的更新需要大量额外的迭代来对其进行弥补,算法的收敛效率仍存在提升空间.针对上述问题,通过改进估计器算法的概率向量更新策略,提出一种基于双重竞争策略的学习自动机算法,并对其ε-收敛特性进行数学证明.实验结果显示,该算法提高了学习自动机的收敛效率,从而验证并确立了所提策略的有效性和算法的优越性. 展开更多
关键词 学习自动机 增强学习 估计器算法 平稳环境 双重竞争策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部