Bovine serum albumin(BSA)and glycine(Gly)dual-ligand-modified copper nanoclusters(BSA-Gly CuNCs)with high fluorescence intensity were synthesized by a one-pot strategy.Based on the competitive fluorescence quenching a...Bovine serum albumin(BSA)and glycine(Gly)dual-ligand-modified copper nanoclusters(BSA-Gly CuNCs)with high fluorescence intensity were synthesized by a one-pot strategy.Based on the competitive fluorescence quenching and dynamic quenching effects of ornidazole(ONZ)on BSA-Gly CuNCs,a simple and sensitive detection method for ONZ was successfully developed.The experimental results demonstrate that the addition of the small molecule Gly can more effectively protect CuNCs,and thus enhance its fluorescence intensity and stability.The proposed assay allowed for the detection of ONZ in a linear range of 0.28 to 52.60μmol·L^(-1)and a detection limit of 0.069μmol·L^(-1).Compared with the single-ligand-modified CuNCs,dual-ligand-modified BSA-Gly CuNCs had higher fluorescence intensity,stability,and sensing ability and were successfully applied to evaluate ONZ in actual ONZ tablets.展开更多
文摘Bovine serum albumin(BSA)and glycine(Gly)dual-ligand-modified copper nanoclusters(BSA-Gly CuNCs)with high fluorescence intensity were synthesized by a one-pot strategy.Based on the competitive fluorescence quenching and dynamic quenching effects of ornidazole(ONZ)on BSA-Gly CuNCs,a simple and sensitive detection method for ONZ was successfully developed.The experimental results demonstrate that the addition of the small molecule Gly can more effectively protect CuNCs,and thus enhance its fluorescence intensity and stability.The proposed assay allowed for the detection of ONZ in a linear range of 0.28 to 52.60μmol·L^(-1)and a detection limit of 0.069μmol·L^(-1).Compared with the single-ligand-modified CuNCs,dual-ligand-modified BSA-Gly CuNCs had higher fluorescence intensity,stability,and sensing ability and were successfully applied to evaluate ONZ in actual ONZ tablets.