期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于双路径编码的遥感建筑物图像分割方法
1
作者
苏赋
李沁
马傲
《计算机科学与探索》
CSCD
北大核心
2024年第10期2704-2711,共8页
高分辨率遥感图像建筑物分割是遥感影像研究的热点之一,而高分辨率遥感图像中建筑物尺度多样容易导致错分割、漏分割和边界模糊。针对上述问题,基于U-Net网络结构提出了一种双路径编码的遥感建筑物图像分割网络(DCU-Net)。DCU-Net在U-Ne...
高分辨率遥感图像建筑物分割是遥感影像研究的热点之一,而高分辨率遥感图像中建筑物尺度多样容易导致错分割、漏分割和边界模糊。针对上述问题,基于U-Net网络结构提出了一种双路径编码的遥感建筑物图像分割网络(DCU-Net)。DCU-Net在U-Net上加入一条并行编码路径,形成双路径编码结构。在编码阶段设计了密集残差编码模块(DRCM)和多尺度空洞卷积编码模块(MDCCM)以增强多尺度特征提取。在网络中加入双路融合注意力模块(DFAM),增强网络对特征的表达能力。为验证网络有效性,在WHU与Massachusetts数据集上进行实验,召回率、F1分数和交并比指标在WHU上达到91.26%、92.33%和86.15%,在Massachusetts Buildings上达到81.64%、84.33%和82.72%。结果表明,DCU-Net对于不同尺度的建筑物提取有较高的提取精度。
展开更多
关键词
遥感影像
建筑物分割
双路径编码
注意力机制
多尺度特征
在线阅读
下载PDF
职称材料
基于双编码路径融合和双向ConvLSTM的神经元图像分割
被引量:
1
2
作者
钱有为
何富运
+2 位作者
韦燕
冯慧玲
胡聪
《广西师范大学学报(自然科学版)》
CAS
北大核心
2023年第3期67-79,共13页
目标分割是神经元图像分析中必不可少的步骤之一,分割的准确性会直接影响到神经元图像分析和重建的质量。在面对结构边界模糊、存在弱噪声或弱纤维信号的神经元图像时,已有的分割方法依然存在误差较大、识别信号不准等问题。为了解决这...
目标分割是神经元图像分析中必不可少的步骤之一,分割的准确性会直接影响到神经元图像分析和重建的质量。在面对结构边界模糊、存在弱噪声或弱纤维信号的神经元图像时,已有的分割方法依然存在误差较大、识别信号不准等问题。为了解决这些问题,基于神经元的特征,本文提出一种基于双编码路径融合和双向ConvLSTM的深度学习网络(DFC-Net)用于神经元图像分割。首先,网络在编码器阶段采用双编码路径提取特征,其中第一路编码路径采用基于空洞卷积的密集连接网络作为固定特征提取器,第二路编码器采用深度残差网络作为特征提取网络;接着,使用密集连接ASPP网络作为桥梁连接编码器和解码器;最后,在跳跃连接中使用双向ConvLSTM结合编码器和解码器,在解码器阶段引入融合网络以融合2个编码器提取的特征,从而增强空间信息的传播。多组对比实验结果显示,本文提出的网络有效地提高了电子显微镜神经元图像的分割精度,在ISBI-2012和SNEMI3D数据集上的Sen、Dice分别达到0.952 7、0.958 9和0.941 6、0.912 7,平均准确率相比于其他U-Net变体网络提高2.93%。
展开更多
关键词
图像分割
神经元
双
编码
路径
D-ASPP
双
向ConvLSTM
在线阅读
下载PDF
职称材料
题名
基于双路径编码的遥感建筑物图像分割方法
1
作者
苏赋
李沁
马傲
机构
西南石油大学电气信息学院
出处
《计算机科学与探索》
CSCD
北大核心
2024年第10期2704-2711,共8页
基金
成都市国际科技合作资助项目(2020-GH02-00016-HZ)。
文摘
高分辨率遥感图像建筑物分割是遥感影像研究的热点之一,而高分辨率遥感图像中建筑物尺度多样容易导致错分割、漏分割和边界模糊。针对上述问题,基于U-Net网络结构提出了一种双路径编码的遥感建筑物图像分割网络(DCU-Net)。DCU-Net在U-Net上加入一条并行编码路径,形成双路径编码结构。在编码阶段设计了密集残差编码模块(DRCM)和多尺度空洞卷积编码模块(MDCCM)以增强多尺度特征提取。在网络中加入双路融合注意力模块(DFAM),增强网络对特征的表达能力。为验证网络有效性,在WHU与Massachusetts数据集上进行实验,召回率、F1分数和交并比指标在WHU上达到91.26%、92.33%和86.15%,在Massachusetts Buildings上达到81.64%、84.33%和82.72%。结果表明,DCU-Net对于不同尺度的建筑物提取有较高的提取精度。
关键词
遥感影像
建筑物分割
双路径编码
注意力机制
多尺度特征
Keywords
remote sensing image
building segmentation
dual-path coding
attention mechanism
multi-scale feature
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
基于双编码路径融合和双向ConvLSTM的神经元图像分割
被引量:
1
2
作者
钱有为
何富运
韦燕
冯慧玲
胡聪
机构
广西师范大学电子与信息工程学院
广西自动检测技术与仪器重点实验室(桂林电子科技大学)
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2023年第3期67-79,共13页
基金
国家自然科学基金(62062014)
广西自然科学基金(2018GXNSFAA050024)
广西师范大学重点科学研究计划(2018ZD007)。
文摘
目标分割是神经元图像分析中必不可少的步骤之一,分割的准确性会直接影响到神经元图像分析和重建的质量。在面对结构边界模糊、存在弱噪声或弱纤维信号的神经元图像时,已有的分割方法依然存在误差较大、识别信号不准等问题。为了解决这些问题,基于神经元的特征,本文提出一种基于双编码路径融合和双向ConvLSTM的深度学习网络(DFC-Net)用于神经元图像分割。首先,网络在编码器阶段采用双编码路径提取特征,其中第一路编码路径采用基于空洞卷积的密集连接网络作为固定特征提取器,第二路编码器采用深度残差网络作为特征提取网络;接着,使用密集连接ASPP网络作为桥梁连接编码器和解码器;最后,在跳跃连接中使用双向ConvLSTM结合编码器和解码器,在解码器阶段引入融合网络以融合2个编码器提取的特征,从而增强空间信息的传播。多组对比实验结果显示,本文提出的网络有效地提高了电子显微镜神经元图像的分割精度,在ISBI-2012和SNEMI3D数据集上的Sen、Dice分别达到0.952 7、0.958 9和0.941 6、0.912 7,平均准确率相比于其他U-Net变体网络提高2.93%。
关键词
图像分割
神经元
双
编码
路径
D-ASPP
双
向ConvLSTM
Keywords
image segmentation
neuron
dual coding path
D-ASPP
bidirectional ConvLSTM
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于双路径编码的遥感建筑物图像分割方法
苏赋
李沁
马傲
《计算机科学与探索》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
2
基于双编码路径融合和双向ConvLSTM的神经元图像分割
钱有为
何富运
韦燕
冯慧玲
胡聪
《广西师范大学学报(自然科学版)》
CAS
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部