期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
利用双路卷积神经网络的速度自动拾取方法
1
作者 赵亮 孙小东 +3 位作者 李振春 秦宁 王九拴 杨静 《石油地球物理勘探》 EI CSCD 北大核心 2024年第6期1206-1216,共11页
人工拾取速度谱是地震资料常规处理中速度分析的主要手段,此方法既耗时、耗力,又限制了大规模三维地震资料处理的效率和准确性。为此,提出了一种利用双路卷积神经网络的速度谱自动拾取方法。首先,采用卷积神经网络结合注意力机制作为主... 人工拾取速度谱是地震资料常规处理中速度分析的主要手段,此方法既耗时、耗力,又限制了大规模三维地震资料处理的效率和准确性。为此,提出了一种利用双路卷积神经网络的速度谱自动拾取方法。首先,采用卷积神经网络结合注意力机制作为主网络,从速度谱数据中提取能量团的特征并实现速度的自动拾取;其次,训练主网络在输出时间—速度序列之前,通过特征融合和特征转换将速度与另一个卷积神经网络(辅网络)输入的未校正CMP道集的隐藏表征进行信息融合,重构成校正后的CMP道集;最后,通过辅网络模拟CMP道集动校正的过程,利用动校正优化速度拾取的精度。模型和实际资料测试结果表明,在加入辅助神经网络引入动校正信息后,文中方法比单一的卷积神经网络在速度拾取方面具有更高的精度。 展开更多
关键词 双路卷积神经网络 神经网络 神经网络 CMP道集 优化拾取
在线阅读 下载PDF
采用词向量注意力机制的双路卷积神经网络句子分类模型 被引量:9
2
作者 郭宝震 左万利 王英 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第9期1729-1737,共9页
针对句子中不同的词对分类结果影响不同以及每个词对应的词向量受限于单一词向量训练模型的特点,提出一种基于词向量注意力机制的双路卷积神经网络句子分类模型(AT-DouCNN).该模型将注意力机制和卷积神经网络相结合,以不同训练算法得到... 针对句子中不同的词对分类结果影响不同以及每个词对应的词向量受限于单一词向量训练模型的特点,提出一种基于词向量注意力机制的双路卷积神经网络句子分类模型(AT-DouCNN).该模型将注意力机制和卷积神经网络相结合,以不同训练算法得到的词向量同时作为输入,分别进行卷积和池化,并在全连接层进行融合,不仅能够使得具体分类任务下句子中的关键信息更易被提取,还能够有效地利用不同种类的词向量得到更加丰富的句子特征,进而提高分类的准确率.实验结果表明:所提出的模型在3个公开数据集上的分类准确率分别达到50.6%、88.6%和95.4%,具有良好的句子分类效果. 展开更多
关键词 词向量 注意力机制 双路卷积神经网络 句子分类
在线阅读 下载PDF
基于边缘的双路卷积神经网络及其可视化 被引量:4
3
作者 李雨冲 闫昭帆 严国萍 《计算机工程与科学》 CSCD 北大核心 2019年第10期1837-1845,共9页
为提高小尺度复杂图像识别准确率,通过对LeNet-5卷积神经网络并入一个新通道,让其处理与边缘有关的信息。结合两种通道产生的不同特征构造分类器,提出一种基于边缘的双路卷积神经网络,对小尺度复杂数据集进行识别。在包含10类产品数据... 为提高小尺度复杂图像识别准确率,通过对LeNet-5卷积神经网络并入一个新通道,让其处理与边缘有关的信息。结合两种通道产生的不同特征构造分类器,提出一种基于边缘的双路卷积神经网络,对小尺度复杂数据集进行识别。在包含10类产品数据上分类的结果表明,双路卷积神经网络的识别准确率远高于传统网络。最后通过神经网络可视化算法对双路卷积神经网络进行了可视化分析。 展开更多
关键词 图像模式识别 双路卷积神经网络 小尺度复杂图像 神经网络可视化
在线阅读 下载PDF
基于双路射频指纹卷积神经网络与特征融合的雷达辐射源个体识别 被引量:6
4
作者 肖易寒 王博煜 +1 位作者 于祥祯 蒋伊琳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3238-3245,共8页
为实现雷达辐射源个体识别不受信号参数、调制方式的影响,该文提出基于双路射频指纹卷积神经网络(Dual RFF-CNN2)和特征融合的雷达辐射源个体识别方法。首先从接收的射频信号中提取原始I/Q(Raw-I/Q)信号;其次分别对Raw-I/Q两路信号进行... 为实现雷达辐射源个体识别不受信号参数、调制方式的影响,该文提出基于双路射频指纹卷积神经网络(Dual RFF-CNN2)和特征融合的雷达辐射源个体识别方法。首先从接收的射频信号中提取原始I/Q(Raw-I/Q)信号;其次分别对Raw-I/Q两路信号进行轴向积分双谱(AIB)和围线积分双谱(SIB)降维以构建双谱积分矩阵;最后将Raw-I/Q信号及双谱积分矩阵共同送入Dual RFF-CNN2网络并进行特征融合以实现雷达辐射源个体识别。实验结果表明,该方法具有较高的识别准确率,提取的“指纹特征”具备稳定性、鲁棒性。 展开更多
关键词 雷达辐射源个体识别 双路射频指纹卷积神经网络 特征融合 指纹特征 原始I/Q信号
在线阅读 下载PDF
基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型 被引量:1
5
作者 陈锦妮 田谷丰 +4 位作者 李云红 朱耀麟 陈鑫 门玉乐 魏小双 《光谱学与光谱分析》 北大核心 2025年第3期678-684,共7页
羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一... 羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一种非破坏性、可进行建模操作的快速测量方法。针对传统的建模方法通常无法学习出通用的近红外光谱波段特征,导致泛化能力弱,且羊绒羊毛纤维的近红外光谱波段特征相似,难以区分的问题,本文提出一种基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型。采集了羊绒羊毛样品的近红外光谱波段数据共1170个进行验证,近红外光谱波段数据范围是1300~2500 nm。利用两个并行卷积神经网络来提取近红外光谱波段的特征,采用原始近红外光谱波段数据和降维近红外光谱波段数据同时输入的方式,并利用多尺度特征提取模块进一步提取中间具有贡献力的近红外光谱波段特征,利用路径交流模块用于两路近红外光谱波段特征的信息交流,最后利用类级别融合得到羊绒羊毛纤维预测结果。在实验过程中,将采集的80%近红外光谱波段数据用于模型训练,20%近红外光谱波段数据用于模型测试。模型测试集的平均预测准确率为94.45%,与传统算法中的随机森林、SVM、1D-CNN等算法相比较分别提升了7.33%、5.22%、2.96%,并进行消融实验对所提模型的结构进一步验证。实验结果表明,本文提出的双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型可实现羊绒羊毛纤维的快速无损预测,为近红外光谱羊绒羊毛纤维预测提供了新的思路。 展开更多
关键词 羊绒羊毛 近红外光谱 深度学习 双路多尺度卷积神经网络
在线阅读 下载PDF
深度神经网络蛋白质溶解性预测模型设计 被引量:1
6
作者 王鲜芳 刘依锋 +2 位作者 杜志勇 朱命冬 李启萌 《河南师范大学学报(自然科学版)》 CAS 北大核心 2021年第2期31-39,共9页
蛋白质溶解性是生物信息学领域的重要研究课题,通过分析蛋白质溶解性数据,结合特征提取和深度学习技术,设计多种卷积神经网络预测蛋白质溶解性的模型.使用CD-HIT对蛋白质原始数据进行降噪,并利用G-gap对每个样本进行张量化处理,得到适... 蛋白质溶解性是生物信息学领域的重要研究课题,通过分析蛋白质溶解性数据,结合特征提取和深度学习技术,设计多种卷积神经网络预测蛋白质溶解性的模型.使用CD-HIT对蛋白质原始数据进行降噪,并利用G-gap对每个样本进行张量化处理,得到适用于卷积神经网络的特征数据,作为模型其中一路网络的输入;为提高模型预测精度,对每个样本利用SCRATCH工具提取6维序列特征和51维结构特征作为额外特征,作为模型的另一路网络输入.依据数据特点,通过对卷积层的串并联结构调整组合,设计4种不同网络模型,实现蛋白质溶解性预测.通过对比试验确定网络结构和参数,结果表明基于深度双路卷积神经网络DDcCNN(Deep Dual-channel Convolutional Neural Networks)的蛋白质溶解性预测模型整体性能最优,其预测精度、查全率、查准率、MCC(Matthews Correlation Coefficient)等性能指标分别达到76.31%、65.31%、75.05%、0.55.并通过与基于传统的深度神经网络、支持向量机、随机森林、决策树建立的预测模型以及现有的研究成果进行比较试验,证明了本研究设计的有效性. 展开更多
关键词 深度双路卷积神经网络 蛋白质溶解性 G-gap二肽频率 预测模型
在线阅读 下载PDF
基于双路并行卷积信息融合的刀具磨损识别 被引量:3
7
作者 赵东旭 袁志响 +3 位作者 易思广 潘加港 张云鹏 卢文壮 《现代制造工程》 CSCD 北大核心 2024年第1期124-129,共6页
针对机械加工现场环境复杂多变,使用单一信号进行刀具磨损识别难以获取全面的刀具磨损特征信息的问题,提出一种同时利用声音信号和工件表面图像信息结合深度学习网络识别刀具磨损状态的方法。首先采集铣削加工过程中声音信号和工件表面... 针对机械加工现场环境复杂多变,使用单一信号进行刀具磨损识别难以获取全面的刀具磨损特征信息的问题,提出一种同时利用声音信号和工件表面图像信息结合深度学习网络识别刀具磨损状态的方法。首先采集铣削加工过程中声音信号和工件表面图像数据,然后使用双路并行卷积神经网络对声音信号和工件表面图像进行特征提取及融合,最后进行刀具磨损识别。结果表明,和单一信号识别结果相比,采用信息融合方法能获取更全面的刀具磨损特征信息,有利于增强刀具磨损识别效果,且刀具磨损识别准确率和F1-score均在95%以上,能有效识别刀具磨损状况。 展开更多
关键词 刀具磨损 磨损识别 信息融合 双路卷积神经网络
在线阅读 下载PDF
基于多层注意力机制的4DC-BGRU脑电情感识别 被引量:5
8
作者 张丽彩 李鸿燕 +1 位作者 司马飞扬 申雁 《电子测量技术》 北大核心 2023年第8期134-141,共8页
为了提高脑电情感识别的准确率,提取更丰富的特征信息,提升网络模型稳定性,提出一种改进的基于多层注意力机制的脑电情感识别模型。在特征提取方面,将原始脑电信号转换成四维空间-频谱-时间结构,提取丰富的脑电信息。在网络模型方面,构... 为了提高脑电情感识别的准确率,提取更丰富的特征信息,提升网络模型稳定性,提出一种改进的基于多层注意力机制的脑电情感识别模型。在特征提取方面,将原始脑电信号转换成四维空间-频谱-时间结构,提取丰富的脑电信息。在网络模型方面,构建双路卷积神经网络学习空间及频率信息,有效提取多尺度特征,增加网络宽度来学习更丰富的特征信息;在卷积层及池化层后融入批量归一化层,防止过拟合。最后,构建多层注意力机制-双向门控循环单元模块处理时间特征并配合Softmax分类。采用双向门控循环单元学习更全面的上下级特征信息。利用多层注意力机制使四维特征中不同时间切片与整体时间切片之间产生关联。该文在DEAP数据集唤醒度和效价两个维度进行了评估实验,二分类平均准确率分别为96.38%和96.73%,四分类平均准确率为93.78%。实验结果显示,与单路卷积神经网络及其他文献算法相比,该文算法的平均准确率有所提高,表明该算法可以有效提升脑电情感识别性能。 展开更多
关键词 脑电情感识别 双路卷积神经网络 多尺度特征 多层注意力机制 双向门控循环单元
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部