期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
基于动态噪声自适应无迹卡尔曼滤波的锂离子电池SOC估计 被引量:1
1
作者 尹康涌 孙磊 +4 位作者 李浩秒 郭东亮 肖鹏 王康丽 蒋凯 《储能科学与技术》 CAS CSCD 北大核心 2024年第11期4065-4077,共13页
锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池... 锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。 展开更多
关键词 动态噪声自适应无卡尔曼滤波 荷电状态 二阶RC等效电路模型 无迹卡尔曼滤波
在线阅读 下载PDF
四驱车辆交互式多模型自适应无迹卡尔曼滤波路面附着系数估计 被引量:1
2
作者 邓浩楠 赵治国 +2 位作者 赵坤 李刚 于勤 《汽车工程》 EI CSCD 北大核心 2024年第8期1357-1369,共13页
路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自... 路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自适应无迹卡尔曼滤波(IMM-AUKF)路面附着系数估计方法,首先将改进的Sage-Husa噪声估计器引入到无迹卡尔曼滤波(UKF)算法中,构建了自适应无迹卡尔曼滤波(AUKF)观测器,以对测量噪声进行实时更新并保证其协方差矩阵的正定性,同时提高新观测数据的权重,并增强算法的实时跟踪精度和稳定性;然后通过选择不同的观测变量,分别构建了车辆纵向行驶工况AUKF观测器和横纵向耦合工况AUKF观测器,并利用交互式多模型(IMM)算法进行观测器模型的切换,进而实现算法在车辆不同行驶工况下路面附着系数的准确估计。高附、低附、对接以及对开等路面仿真试验及实车道路试验结果表明,所提出的IMM-AUKF算法相比于传统的UKF算法,具有更高的估计精度与更快的收敛速度,能够适应不同工况下路面附着系数的实时准确估计。 展开更多
关键词 分布式四轮驱动 路面附着系数 交互式多模型 适应无卡尔曼滤波
在线阅读 下载PDF
基于自适应无迹卡尔曼滤波的气流角融合方法
3
作者 吴云燕 黄天鹏 +2 位作者 刘武 朱雪耀 马钊 《电光与控制》 CSCD 北大核心 2024年第11期109-114,共6页
迎角、侧滑角是影响飞控系统安全的关键参数,而大气数据系统在恶劣天气、机动飞行情况下难以准确测量气流角,在故障隔离失败情况下甚至会引发飞行安全问题。鉴于此,提出基于自适应无迹卡尔曼滤波(AUKF)的气流角融合方法,通过惯导系统和... 迎角、侧滑角是影响飞控系统安全的关键参数,而大气数据系统在恶劣天气、机动飞行情况下难以准确测量气流角,在故障隔离失败情况下甚至会引发飞行安全问题。鉴于此,提出基于自适应无迹卡尔曼滤波(AUKF)的气流角融合方法,通过惯导系统和飞行器动力学模型信息构建滤波模型,同时将自适应滤波思想应用于无迹卡尔曼滤波器,利用观测残差序列构建卡方检验和自适应渐消矩阵,实现了动态飞行、故障情况下气流角的高精度输出。仿真结果表明,所提方法的性能优于传统卡尔曼滤波算法,具有较大的工程应用价值。 展开更多
关键词 迎角 侧滑角 适应无卡尔曼滤波 故障自检测 卡方检验 适应渐消矩阵
在线阅读 下载PDF
基于双自适应卡尔曼滤波的锂电池状态估算 被引量:5
4
作者 黄鹏超 鄂加强 《储能科学与技术》 CAS CSCD 北大核心 2022年第2期660-666,共7页
精准的锂电池建模是保证电池储能系统可靠性至关重要的手段。荷电状态(state of charge,SOC)的准确估计保证了特定应用程序的安全高效运行。为了提高SOC的估计精度,首先建立等效电路模型,利用遗忘因子的偏差补偿最小二乘法(bias compens... 精准的锂电池建模是保证电池储能系统可靠性至关重要的手段。荷电状态(state of charge,SOC)的准确估计保证了特定应用程序的安全高效运行。为了提高SOC的估计精度,首先建立等效电路模型,利用遗忘因子的偏差补偿最小二乘法(bias compensation recursive least squares,BCRLS)对电池模型进行参数辨识。然后,利用自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法来估计SOC。由于无迹无迹卡尔曼滤波算法易受非线性因素的干扰,因此提出了利用权重量定义AUKF算法提高SOC的估计精度。由于电池在放电过程中,电池内部特性会发生变化,而电池欧姆内阻会对SOC估计结果产生直接影响。基于此,本工作提出了双自适应无迹卡尔曼滤波来进一步提高SOC的估计精度。通过和不同算法进行比较,实验结果表明,所提算法估计SOC的误差控制在2%以内,验证了算法的有效性。 展开更多
关键词 锂离子电池 荷电状态 偏差补偿最小二乘法 权重向量 双自适应无迹卡尔曼滤波
在线阅读 下载PDF
基于自适应无迹卡尔曼滤波和经济模型预测控制的全钒液流电池SOC/SOP联合估计方法
5
作者 张宇 姚尧 +4 位作者 刘睿 金雷 薛斐 周鹏 熊斌宇 《储能科学与技术》 CAS CSCD 北大核心 2024年第11期4089-4101,共13页
荷电状态(state of charge,SOC)和峰值功率(state of peak power,SOP)的精确估计对保障电池安全稳定运行具有重要意义。为解决传统估计算法误差高、鲁棒性差等问题,本文提出了一种基于自适应无迹卡尔曼滤波(adaptive unscented Kalman f... 荷电状态(state of charge,SOC)和峰值功率(state of peak power,SOP)的精确估计对保障电池安全稳定运行具有重要意义。为解决传统估计算法误差高、鲁棒性差等问题,本文提出了一种基于自适应无迹卡尔曼滤波(adaptive unscented Kalman filtering,AUKF)和经济模型预测控制(economic model predictive control,EMPC)的全钒液流电池(all-vanadium redox batteries,VRB)SOC/SOP联合估计方法。首先,为了提高传统模型的建模精度,本文综合考虑了VRB的电化学场和流体力学场的耦合特性,建立了一个能够全面刻画VRB运行过程的综合等效电路模型,并采用人工蜂群算法(artificial bee colony algorithm,ABC)对模型参数进行离线辨识。随后,考虑到传统的UKF算法无法适应系统噪声,收敛性差,且忽略电池参数变化等缺点,本文提出了基于AUKF的在线参数辨识和SOC估计算法,通过自适应调整UKF算法的参数来提高模型的精度。结合SOC的估计结果,采用EMPC算法估计VRB的SOP,并综合考虑了电压、电流、SOC和电解液流速等约束条件。最后,设计了多种实验工况验证了本文提出的SOC/SOP联合估计算法的精度。文章研究内容能够为液流电池不同运行状态下峰值功率预测和储能电站的精准调度提供依据。 展开更多
关键词 全钒液流电池 荷电状态 峰值功率 在线参数辨识 适应无卡尔曼滤波 经济模型预测控制
在线阅读 下载PDF
基于模型融合与自适应无迹卡尔曼滤波算法的锂离子电池SOC估计 被引量:14
6
作者 刘伟龙 王丽芳 +1 位作者 廖承林 王立业 《汽车工程》 EI CSCD 北大核心 2017年第9期997-1003,共7页
为提高电动汽车动力电池SOC的估计精度,本文中对锂离子电池模型与参数辨识算法、自适应无迹卡尔曼滤波(AUKF)算法和基于电池模型融合的SOC估计算法进行研究。建立了具有明确物理意义的电池电路模型,采用基于遗传算法(GA)的模型参数辨识... 为提高电动汽车动力电池SOC的估计精度,本文中对锂离子电池模型与参数辨识算法、自适应无迹卡尔曼滤波(AUKF)算法和基于电池模型融合的SOC估计算法进行研究。建立了具有明确物理意义的电池电路模型,采用基于遗传算法(GA)的模型参数辨识算法,设计了基于AUKF的电池SOC估计方法,并基于贝叶斯信息准则,提出了电池模型融合方法,实现了基于模型融合与AUKF的电池SOC估计。仿真结果验证了该方法具有较高的精度。 展开更多
关键词 锂离子电池 SOC估计 参数辨识 适应无卡尔曼滤波 模型融合
在线阅读 下载PDF
模糊自适应无迹卡尔曼滤波方法用于天文导航 被引量:10
7
作者 张迎春 李璟璟 +1 位作者 吴丽娜 李化义 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第1期12-16,共5页
为克服航天器自主天文导航中不确定测量噪声对导航精度的影响,提出了一种基于模糊推理的自适应无迹卡尔曼滤波(FUKF)方法.该方法根据滤波过程中实际测量残差方差与理论残差方差的比值,将系统滤波过程分为普通模式和自适应模式.分别对两... 为克服航天器自主天文导航中不确定测量噪声对导航精度的影响,提出了一种基于模糊推理的自适应无迹卡尔曼滤波(FUKF)方法.该方法根据滤波过程中实际测量残差方差与理论残差方差的比值,将系统滤波过程分为普通模式和自适应模式.分别对两种模式建立模糊隶属度函数,应用模糊推理规则,得到自适应修正因子,对系统的测量噪声方差阵进行实时修正,使其跟踪实际测量噪声的变化.当系统受到不确定环境噪声影响时,该滤波算法仍然有效收敛.将该方法应用于直接敏感地平的航天器自主天文导航中,不同测量噪声水平下的仿真结果表明,该算法对不确定的测量噪声具有较强的自适应能力,保证了导航信息的输出精度. 展开更多
关键词 模糊推理系统 适应滤波 无迹卡尔曼滤波 天文导航
在线阅读 下载PDF
基于自适应比例修正无迹卡尔曼滤波的目标定位估计算法 被引量:10
8
作者 朱明强 侯建军 +1 位作者 刘颖 苏军峰 《兵工学报》 EI CAS CSCD 北大核心 2013年第5期561-566,共6页
针对无线传感器网络中基于接收信号指示强度(RSSI)定位系统在精确性和实时性方面存在的问题,提出了一种基于自适应比例修正无迹卡尔曼滤波(ASUKF)的定位估计算法。通过分析RSSI定位模型的特点,将定位问题转化为非线性系统估计问题。该... 针对无线传感器网络中基于接收信号指示强度(RSSI)定位系统在精确性和实时性方面存在的问题,提出了一种基于自适应比例修正无迹卡尔曼滤波(ASUKF)的定位估计算法。通过分析RSSI定位模型的特点,将定位问题转化为非线性系统估计问题。该算法在滤波过程中采用比例修正对称采样策略,并利用次优Sage-Husa估计器实时处理系统噪声的统计特性,对目标位置和信道参数进行同时估计解算。实验及仿真结果表明,与标准UKF估计算法相比,新算法有效减小了状态估计误差,提高了滤波的稳定性,定位精度更为准确。 展开更多
关键词 信息处理技术 无线传感器网络 定位 适应滤波 无迹卡尔曼滤波
在线阅读 下载PDF
基于自适应无迹卡尔曼滤波算法的多股螺旋弹簧动态响应模型参数辨识和分析 被引量:7
9
作者 丁传俊 张相炎 刘宁 《兵工学报》 EI CAS CSCD 北大核心 2018年第1期28-37,共10页
针对传统方法在辨识多股螺旋弹簧(以下简称多股簧)非线性响应模型参数时效率较低、精度较差的问题,提出带噪声统计估计器的自适应无迹卡尔曼滤波(AUKF)算法。该算法通过对多股簧试验数据中的量测(过程)噪声进行递推和估计,能够确保非线... 针对传统方法在辨识多股螺旋弹簧(以下简称多股簧)非线性响应模型参数时效率较低、精度较差的问题,提出带噪声统计估计器的自适应无迹卡尔曼滤波(AUKF)算法。该算法通过对多股簧试验数据中的量测(过程)噪声进行递推和估计,能够确保非线性模型参数辨识的收敛性;结合多股簧动态试验对该算法进行检验。研究结果表明:即使在量测噪声级别较高的情况下,AUKF算法也可以准确地求出多股簧的动力学模型参数;在预测多股簧动态响应过程中,若预测振幅和参数辨识所用振幅相差太大则会导致较大的预测误差;当加载速度变化时,多股簧动力学模型中的迟滞部分参数基本不变,但0阶非线性刚度系数和非线性放大因子变化较大。 展开更多
关键词 多股螺旋弹簧 参数辨识 非线性迟滞模型 适应无卡尔曼滤波算法
在线阅读 下载PDF
防发散无迹卡尔曼滤波自适应网格交互式多模型算法 被引量:4
10
作者 张园 董受全 +2 位作者 钟志通 刘淑波 初俊博 《火力与指挥控制》 CSCD 北大核心 2015年第2期40-44,共5页
针对非线性观测条件下的机动目标跟踪问题,基于机动目标的协同转弯模型,采用防发散无迹卡尔曼滤波方法和自适应网格的模型集自适应策略,研究了一种变结构交互式多模型算法。对二维机动目标跟踪的仿真结果表明,该算法与相应的固定结构交... 针对非线性观测条件下的机动目标跟踪问题,基于机动目标的协同转弯模型,采用防发散无迹卡尔曼滤波方法和自适应网格的模型集自适应策略,研究了一种变结构交互式多模型算法。对二维机动目标跟踪的仿真结果表明,该算法与相应的固定结构交互式多模型算法相比,可以解决固定结构多模型算法存在的问题,有效提高多模型算法的精度和费效比,缩短计算时间,且适合工程应用。 展开更多
关键词 无迹卡尔曼滤波(UKF) 适应网格(AG) 交互式多模型(IMM) 机动目标跟踪 变结构多模型(VSMM)
在线阅读 下载PDF
状态自适应无迹卡尔曼滤波算法及其在水下机动目标跟踪中的应用 被引量:18
11
作者 马艳 刘小东 《兵工学报》 EI CAS CSCD 北大核心 2019年第2期361-368,共8页
为了满足水下对抗对机动目标实时跟踪和目标航速、航向准确估计的要求,针对观测量为距离和方位的机动目标跟踪,对传统无迹卡尔曼滤波(UKF)跟踪算法进行了改善。提出根据UKF算法预测值和观测值残差的概率分布自适应调整目标状态噪声方法... 为了满足水下对抗对机动目标实时跟踪和目标航速、航向准确估计的要求,针对观测量为距离和方位的机动目标跟踪,对传统无迹卡尔曼滤波(UKF)跟踪算法进行了改善。提出根据UKF算法预测值和观测值残差的概率分布自适应调整目标状态噪声方法,使得UKF跟踪算法能够根据目标运动状态及时调整状态方程,在目标机动时减小对预测值的依赖,在目标非机动时增大对预测值的依赖。这种在线实时估计系统噪声状态的跟踪方法更加适用于机动目标的跟踪。数值仿真结果表明:该算法不仅在目标机动时具有良好的跟踪效果,而且在目标非机动时具有准确的估计性能。通过声纳信息综合处理系统验证了状态自适应UKF跟踪算法的性能。 展开更多
关键词 水下机动目标跟踪 无迹卡尔曼滤波 适应滤波 航速 航向
在线阅读 下载PDF
鲁棒自适应无迹卡尔曼滤波的SLAM算法 被引量:5
12
作者 刘艳 程诚 裴少婧 《电光与控制》 CSCD 北大核心 2019年第8期12-16,23,共6页
针对SLAM在复杂环境下对噪声干扰鲁棒性差以及运动轨迹预测误差问题,在UKF中引入自适应估计理论与鲁棒H∞控制准则,提出一种鲁棒自适应UKF-SLAM算法。该算法利用自适应估计理论,构建抗差因子和自适应因子,自适应估计测量和状态噪声等价... 针对SLAM在复杂环境下对噪声干扰鲁棒性差以及运动轨迹预测误差问题,在UKF中引入自适应估计理论与鲁棒H∞控制准则,提出一种鲁棒自适应UKF-SLAM算法。该算法利用自适应估计理论,构建抗差因子和自适应因子,自适应估计测量和状态噪声等价协方差阵,实现粗差分离和噪声方差自适应补偿;利用鲁棒H∞控制准则对系统状态均值和协方差进行迭代更新,提高噪声干扰鲁棒性、降低预测误差。仿真结果表明:该算法能保证移动机器人在不同噪声环境下具有良好的鲁棒性与定位精度。 展开更多
关键词 移动机器人 SLAM 无迹卡尔曼滤波 适应估计 抗差估计
在线阅读 下载PDF
基于改进自适应无迹卡尔曼滤波算法的锂电池荷电状态估计 被引量:3
13
作者 张海涛 刘新天 《汽车工程师》 2023年第11期12-18,共7页
针对变窗口自适应无迹卡尔曼滤波(AUKF)算法在窗口改变时窗口长度发生突变,窗口序列数据急剧减少,导致状态估计误差增大,稳定性和精确度下降的问题,基于二阶RC等效电路模型,并采用遗忘递推最小二乘(FFRLS)算法进行参数辨识,结合改进后... 针对变窗口自适应无迹卡尔曼滤波(AUKF)算法在窗口改变时窗口长度发生突变,窗口序列数据急剧减少,导致状态估计误差增大,稳定性和精确度下降的问题,基于二阶RC等效电路模型,并采用遗忘递推最小二乘(FFRLS)算法进行参数辨识,结合改进后的变窗口AUKF算法估计锂电池荷电状态(SOC)。在城市道路循环(UDDS)工况下进行试验验证,并与无迹卡尔曼滤波(UKF)、自适应无迹卡尔曼滤波(AUKF)及变窗口AUKF算法进行对比,结果表明,改进后的变窗口AUKF算法将平均误差控制在0.38%以内,具有更高的精确性和收敛性。 展开更多
关键词 无迹卡尔曼滤波 荷电状态 变窗口噪声估计器 适应滤波
在线阅读 下载PDF
双自适应衰减卡尔曼滤波锂电池荷电状态估计 被引量:13
14
作者 赵云飞 徐俊 +2 位作者 王霄 徐浩 梅雪松 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第12期99-105,共7页
针对卡尔曼滤波法在锂离子电池荷电状态(SOC)估计时存在误差较大、收敛较慢等问题,提出了一种双自适应衰减扩展卡尔曼滤波荷电状态估计(DAFEKF)算法。该算法首先设计了针对动力电池的荷电状态估计观测器,利用测得的电流和电压值分别作... 针对卡尔曼滤波法在锂离子电池荷电状态(SOC)估计时存在误差较大、收敛较慢等问题,提出了一种双自适应衰减扩展卡尔曼滤波荷电状态估计(DAFEKF)算法。该算法首先设计了针对动力电池的荷电状态估计观测器,利用测得的电流和电压值分别作为观测器的输入和观测值,结合双自适应衰减扩展卡尔曼滤波估计出观测器中的电池荷电状态,在卡尔曼滤波算法的基础上加入时变衰减因子来减弱过去数据对当前滤波值的影响,并自适应地调整卡尔曼算法中过程噪声和测量噪声协方差。利用DAFEKF算法估计出的SOC结果与扩展卡尔曼滤波(EKF)和自适应扩展卡尔曼滤波(AEKF)算法进行了比较,结果表明,DAFEKF方法具有较好的准确性、鲁棒性和收敛性,使SOC估计误差控制在2%以内。 展开更多
关键词 锂离子电池 荷电状态 适应卡尔曼滤波 扩展卡尔曼滤波 双自适应
在线阅读 下载PDF
动力定位中跟踪环境力突变的自适应无迹卡尔曼滤波(英文) 被引量:3
15
作者 丁浩晗 冯辉 徐海祥 《船舶力学》 EI CSCD 北大核心 2017年第6期711-721,共11页
无迹卡尔曼滤波可以在状态估计中滤去噪声干扰,已经被广泛应用于动力定位系统中。针对复杂海洋情况下动力定位系统需要准确、及时地估计当前时刻的状态而无迹卡尔曼滤波无法跟踪状态突变的问题,为此文章提出了一种自适应无迹卡尔曼滤波... 无迹卡尔曼滤波可以在状态估计中滤去噪声干扰,已经被广泛应用于动力定位系统中。针对复杂海洋情况下动力定位系统需要准确、及时地估计当前时刻的状态而无迹卡尔曼滤波无法跟踪状态突变的问题,为此文章提出了一种自适应无迹卡尔曼滤波。通过及时判断状态值突变并适当调整后验均方差矩阵,可有效地跟踪船舶状态并减小实际位置与定点位置的偏差。仿真实验证明了算法的有效性。 展开更多
关键词 动力定位 适应无卡尔曼滤波 环境力突变
在线阅读 下载PDF
自适应无迹卡尔曼滤波动力电池的SOC估计 被引量:14
16
作者 谢永东 何志刚 +1 位作者 陈栋 周洪剑 《北京交通大学学报》 CAS CSCD 北大核心 2018年第2期129-137,共9页
无迹卡尔曼滤波法(Unscented-Kalman Filter,UKF)在估计动力电池的剩余容量(State of Charge,SOC)时,由于系统噪声的不确定,可能导致算法不收敛,而且算法的估计性能受模型精度的影响,为此采用自适应无迹卡尔曼滤波法(Adaptive-UKF,AUKF... 无迹卡尔曼滤波法(Unscented-Kalman Filter,UKF)在估计动力电池的剩余容量(State of Charge,SOC)时,由于系统噪声的不确定,可能导致算法不收敛,而且算法的估计性能受模型精度的影响,为此采用自适应无迹卡尔曼滤波法(Adaptive-UKF,AUKF)动态估计电动汽车动力电池的SOC.建立了适用于SOC估计的电池模型,辨识相应的电池模型的参数并进行验证,将AUKF应用到该模型,在未知干扰噪声环境下,在线估计电池的SOC.试验仿真结果表明:UKF算法的估计误差在-0.04~0.06之间跳动,而AUKF算法的估计误差平稳的保持在0.05以内,实时修正微小的模型误差带来的SOC估计误差. 展开更多
关键词 电动汽车 动力电池 SOC估计 适应无卡尔曼滤波
在线阅读 下载PDF
采用自适应无迹卡尔曼滤波器的车速和路面附着系数估计 被引量:12
17
作者 张家旭 李静 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第3期68-75,共8页
针对车辆主动安全控制中的车速和路面附着系数这一关键信息,提出了一种实时估计该信息的滤波算法,同时建立了将包含时变噪声统计特性的七自由度非线性车辆动力学模型作为滤波算法的标称模型,以及一种自适应无迹卡尔曼滤波算法。该算法... 针对车辆主动安全控制中的车速和路面附着系数这一关键信息,提出了一种实时估计该信息的滤波算法,同时建立了将包含时变噪声统计特性的七自由度非线性车辆动力学模型作为滤波算法的标称模型,以及一种自适应无迹卡尔曼滤波算法。该算法采用传统的无迹卡尔曼滤波器来估计车速和路面附着系数,同时利用次优Sage-Husa噪声估计器对系统的噪声统计特性进行实时更新,其中采用遗忘因子限制噪声估计器的记忆长度,使新近数据发挥重要作用,使陈旧数据逐渐被遗忘,从而解决了因系统标称模型误差、外界扰动等因素引起的噪声时变的问题。在不同路面条件下进行了多种工况的实验验证,并与无迹卡尔曼滤波器的估计结果进行对比分析,结果表明,该算法具有良好的鲁棒性,其估计精度高于无迹卡尔曼滤波器,且满足车辆主动安全控制系统的要求。 展开更多
关键词 车辆动力学 适应滤波 无迹卡尔曼滤波 次优Sage-Husa噪声估计器
在线阅读 下载PDF
基于自适应无迹卡尔曼滤波的汽车状态参数估计 被引量:3
18
作者 石志伟 任师通 +1 位作者 魏民祥 查曰珩 《公路与汽运》 2021年第4期8-11,15,共5页
针对车辆状态参数估计过程中过程噪声和测量噪声的不确定性,提出一种基于自适应无迹卡尔曼滤波的车辆状态参数估计算法。建立包括纵向、横向和横摆3个自由度的车辆动力学模型,基于无迹卡尔曼滤波理论建立自适应无迹卡尔曼滤波估计模型,... 针对车辆状态参数估计过程中过程噪声和测量噪声的不确定性,提出一种基于自适应无迹卡尔曼滤波的车辆状态参数估计算法。建立包括纵向、横向和横摆3个自由度的车辆动力学模型,基于无迹卡尔曼滤波理论建立自适应无迹卡尔曼滤波估计模型,最后搭建MATLAB/Simulink-Carsim联合仿真平台对提出的算法进行仿真验证。结果表明,相比于传统的无迹卡尔曼滤波算法在进行车辆转台参数估计时的发散现象,文中提出的算法在对车辆状态参数进行估计时结果收敛且估计精度较高。 展开更多
关键词 汽车 车辆状态估计 三自由度车辆模型 适应无卡尔曼滤波
在线阅读 下载PDF
基于噪声估计的自适应无迹卡尔曼滤波算法 被引量:4
19
作者 叶泽浩 宋亚伟 +1 位作者 陈传生 何成伟 《空天预警研究学报》 2022年第4期242-246,251,共6页
针对无迹卡尔曼滤波算法(UKF)需要借助较为准确的系统模型和噪声才能给出较为良好的滤波结果这一问题,提出了一种基于噪声估计的自适应无迹卡尔曼滤波算法(NEA-UKF).首先将SAGE-HUSA算法原理引入到UKF算法中,使UKF算法具有自适应估计状... 针对无迹卡尔曼滤波算法(UKF)需要借助较为准确的系统模型和噪声才能给出较为良好的滤波结果这一问题,提出了一种基于噪声估计的自适应无迹卡尔曼滤波算法(NEA-UKF).首先将SAGE-HUSA算法原理引入到UKF算法中,使UKF算法具有自适应估计状态噪声和量测噪声的能力;然后在状态噪声和量测噪声估计方程中引入记忆指数衰减加权以及协方差匹配判据,提高了噪声的实时估计精度和稳定性;最后针对状态模型和状态噪声不准确情况下的目标进行跟踪仿真.仿真结果表明,NEA-UKF算法能较好地自适应调节状态噪声和状态噪声协方差矩阵去匹配目标的运动状态,且几乎不受目标状态的突变影响,保持了对目标的良好跟踪. 展开更多
关键词 无迹卡尔曼滤波算法 SAGE-HUSA算法 适应估计 目标跟踪
在线阅读 下载PDF
基于改进无迹卡尔曼滤波的锂电池SOC在线估计 被引量:11
20
作者 陈则王 杨丽文 +1 位作者 赵晓兵 王友仁 《计量学报》 CSCD 北大核心 2019年第1期40-48,共9页
针对无迹卡尔曼滤波算法对电池模型敏感并且容易受到不确定噪声干扰的问题,提出了基于改进的无迹卡尔曼滤波算法(improved unscented Kalman filter,IUKF),提高电池荷电状态(state of charge,SOC)估计精度和鲁棒性能。首先,对锂离子电... 针对无迹卡尔曼滤波算法对电池模型敏感并且容易受到不确定噪声干扰的问题,提出了基于改进的无迹卡尔曼滤波算法(improved unscented Kalman filter,IUKF),提高电池荷电状态(state of charge,SOC)估计精度和鲁棒性能。首先,对锂离子电池进行建模并完成参数离线辨识;其次,对模型参数进行敏感性分析,研究不同参数对SOC估计效果的影响程度,为模型参数自适应对象的选取提供依据;随后,研究了包含模型自适应算法和噪声自适应算法在内的IUKF算法实现过程;最后,通过物理实验对比分析了IUKF与其它算法的实际估计效果。实验结果表明:该方法估计误差小于1. 79%,鲁棒性能良好。 展开更多
关键词 计量学 荷电状态估计 锂离子电池 无迹卡尔曼滤波 模型自适应 噪声自适应
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部