期刊文献+
共找到121篇文章
< 1 2 7 >
每页显示 20 50 100
多策略改进麻雀搜索算法优化无迹卡尔曼滤波方法
1
作者 刘建娟 李志伟 +2 位作者 姬淼鑫 吴豪然 许强伟 《科学技术与工程》 北大核心 2025年第1期227-237,共11页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对UT中采样点分布状态控制参数进行寻优调整的方法,从而优化Sigma点分布以提高非线性近似效果,改善滤波估计性能。同时针对传统麻雀搜索算法面临的易陷入局部最优和收敛速度慢等问题,首先利用Cubic混沌映射改善初始种群的多样性;其次在发现者阶段引入非线性自适应收敛因子,提高平衡算法在全局探索和局部开发方面的能力;同时在追随者阶段利用小波变异策略,以避免追随者盲目追随而导致算法陷入局部最优;最后利用自适应t分布的扰动能力增强算法的全局搜索能力。通过测试函数对ISSA算法进行仿真实验,结果表明ISSA算法具有更好的收敛性和求解精度,同时验证ISSA优化UKF算法后的仿真结果,表明了ISSA-UKF算法相比于UKF算法的位置均方根误差降低了52.2%,速度均方根误差降低了21.9%,证明了改进方法的有效性和可行性。 展开更多
关键词 无迹卡尔曼滤波 麻雀搜索算法 Cubic混沌映射 非线性自适应收敛因子 小波变异策略
在线阅读 下载PDF
基于指数加权平均的GNSS/SINS组合导航系统Sage-Husa自适应卡尔曼滤波算法
2
作者 林雪原 孙炜玮 《大地测量与地球动力学》 CSCD 北大核心 2024年第12期1287-1292,1320,共7页
测量噪声异常会导致GNSS/SINS组合导航系统滤波精度下降,甚至滤波发散。为解决该问题,首先提出适用于组合导航系统的Sage-Husa自适应卡尔曼滤波方法SHAKF;然后根据滤波新息协方差的理论估计值及实际估计值构建控制因子,提出测量噪声均... 测量噪声异常会导致GNSS/SINS组合导航系统滤波精度下降,甚至滤波发散。为解决该问题,首先提出适用于组合导航系统的Sage-Husa自适应卡尔曼滤波方法SHAKF;然后根据滤波新息协方差的理论估计值及实际估计值构建控制因子,提出测量噪声均方差突变起始时刻及结束时刻的检测方法,构建基于指数函数变化规律的遗忘因子,进而提出基于指数加权平均的Sage-Husa自适应卡尔曼滤波方法EWASHAKF;最后将EWASHAKF应用于GNSS/SINS组合导航系统,并进行仿真实验。结果表明,相对于SHAKF,EWASHAKF能够准确地跟踪测量噪声均方差的各种变化,进而提高组合导航系统的滤波精度。 展开更多
关键词 Sage-Husa算法 组合导航系统 适应卡尔曼滤波算法 控制因子 遗忘因子
在线阅读 下载PDF
基于目标优化和卡尔曼滤波的SOC估算方法
3
作者 邢展 王建宇 +2 位作者 闫晓钰 罗玉珺 涂燕 《电源技术》 北大核心 2025年第1期176-183,共8页
准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法... 准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法应用的复杂性,提出了一种适用于在线监测应用场景的基于蜣螂优化算法和自适应无迹卡尔曼滤波的SOC估计算法。将二阶Thevenin等效电路作为蓄电池的模型,利用蜣螂优化算法对该模型的关键参数进行自适应辨识,根据所辨识的参数,利用自适应无迹卡尔曼滤波算法对SOC进行估算。为了验证该算法的有效性,利用锂离子电池不同动态工况的实验数据进行了测试。实验结果表明,在初始参数设置模糊或不准确的情况下,该算法依然能够自适应地获取精度更高的SOC估计结果,具有更好的鲁棒性。 展开更多
关键词 蓄电池 SOC在线估算 蜣螂优化算法 适应无迹卡尔曼滤波
在线阅读 下载PDF
基于自适应优化选择-抗差自适应卡尔曼滤波混合模型的GNSS+5G组合定位 被引量:4
4
作者 胡祥祥 宋宝 +4 位作者 石亚亚 庞栋栋 吴成永 张利利 李一蜚 《测绘通报》 CSCD 北大核心 2024年第7期24-29,共6页
PNT系统的构建是通信和导航领域的关键课题。发展能够兼容集成不同类型PNT手段,提供具备较好的弹性和环境适应性的综合PNT体系已成为当前刻不容缓的重要任务。5G和北斗系统的出现和发展,为PNT体系走向更综合、更弹性提供了新的思路。据... PNT系统的构建是通信和导航领域的关键课题。发展能够兼容集成不同类型PNT手段,提供具备较好的弹性和环境适应性的综合PNT体系已成为当前刻不容缓的重要任务。5G和北斗系统的出现和发展,为PNT体系走向更综合、更弹性提供了新的思路。据此,本文提出了一种基于GNSS+5G组合数据的自适应优化选择-抗差自适应卡尔曼滤波(AOS-RAKF)算法,以实现城市复杂环境中的高精度定位估计。该算法主要由两个模块组成,即基于AOS的5G基站测量数据优化和基于AOS-RAKF算法的GNSS+5G组合定位。其中,基于AOS的5G基站测量数据优化模块通过自适应优化选择因子实现更好的观测数据重选。GNSS+5G组合定位模块利用优化后的5G数据和GNSS建立耦合结构模型,再利用RAKF方法实现移动车辆的高精度定位。半实物仿真测试结果表明,复杂城市环境下与使用原始测量数据的GNSS、单5G、传统的GNSS+5G组合定位相比,本文AOS-RAKF方法显著提高了定位精度。 展开更多
关键词 5G定位 GNSS GNSS+5G组合定位 适应优化选择算法 抗差自适应卡尔曼滤波算法
在线阅读 下载PDF
基于双自适应无迹卡尔曼滤波算法的锂电SOC/SOH联合估计 被引量:4
5
作者 王若琦 王晓佳 +1 位作者 杨淇 郭凯丽 《机械设计与制造》 北大核心 2023年第1期1-4,8,共5页
合理准确地估算出电池荷电状态(SOC)与健康状态(SOH)对电动汽车安全运行和能量分配有重大意义。目前锂离子动力电池状态参数的研究中,很少考虑两个参数在估算过程中的相互影响;传统无迹卡尔曼滤波(UKF)算法在应用时,常因难以真实模拟实... 合理准确地估算出电池荷电状态(SOC)与健康状态(SOH)对电动汽车安全运行和能量分配有重大意义。目前锂离子动力电池状态参数的研究中,很少考虑两个参数在估算过程中的相互影响;传统无迹卡尔曼滤波(UKF)算法在应用时,常因难以真实模拟实际噪声导致估算误差增大。针对这些问题,这里以电池Thevenin等效电路模型为基础,结合改进的AUKF,提出双自适应无迹卡尔曼滤波算法(DAUKF),实时更新计算模型参数,实现SOC与SOH的联合估算,提高算法的估算精度。最后通过实验及仿真对比,验证了该算法的可行性及估算精度。 展开更多
关键词 锂离子动力电池 双自适应无迹卡尔曼滤波 SOC SOH 联合估算
在线阅读 下载PDF
组合导航系统卡尔曼滤波衰减因子自适应估计算法研究 被引量:20
6
作者 耿延睿 崔中兴 《中国惯性技术学报》 EI CSCD 2001年第4期8-10,27,共4页
提出了一种衰减记忆卡尔曼滤波中衰减因子的自适应估计方法 ,并在 GPS/SINS组合导航系统中进行了计算仿真。仿真结果表明 :该算法能够较好地估计出衰减因子的大小 ,有效地抑制滤波发散 。
关键词 捷联式惯性导航 卡尔曼滤波 适应滤波 适应估计算法 组合导航系统 GPS/SINS
在线阅读 下载PDF
基于自适应卡尔曼滤波的多目标跟踪算法 被引量:18
7
作者 王广玉 窦磊 窦杰 《计算机应用》 CSCD 北大核心 2022年第S01期271-275,共5页
在视频的多目标跟踪任务中,卡尔曼滤波器性能受硬件噪声以及光线等环境噪声干扰较大,导致滤波性能下降甚至发散,严重影响目标跟踪精度。针对这一问题,在检测端不变的情况下,对跟踪算法中的卡尔曼滤波器进行改进。首先,通过实时监测跟踪... 在视频的多目标跟踪任务中,卡尔曼滤波器性能受硬件噪声以及光线等环境噪声干扰较大,导致滤波性能下降甚至发散,严重影响目标跟踪精度。针对这一问题,在检测端不变的情况下,对跟踪算法中的卡尔曼滤波器进行改进。首先,通过实时监测跟踪过程中滤波器观测值和估计值的动态变化,提取新息或残差;然后,利用新息协方差对观测噪声统计特性进行自适应估计,进而调整卡尔曼滤波增益;并通过数值仿真表明所提方法能有效降低噪声,获得更好跟踪效果。最后,基于YOLOv3算法检测结果进行实验验证,结果表明在多目标跟踪(MOT16)数据集上,相较于传统卡尔曼滤波设计,所提自适应卡尔曼滤波在多目标跟踪任务中的精度、标号(ID)相关指标(IDF1,IDP)等指标均有所提升。 展开更多
关键词 多目标跟踪 YOLOv3算法 适应卡尔曼滤波 新息 噪声协方差
在线阅读 下载PDF
基于自适应无迹卡尔曼滤波算法的多股螺旋弹簧动态响应模型参数辨识和分析 被引量:7
8
作者 丁传俊 张相炎 刘宁 《兵工学报》 EI CAS CSCD 北大核心 2018年第1期28-37,共10页
针对传统方法在辨识多股螺旋弹簧(以下简称多股簧)非线性响应模型参数时效率较低、精度较差的问题,提出带噪声统计估计器的自适应无迹卡尔曼滤波(AUKF)算法。该算法通过对多股簧试验数据中的量测(过程)噪声进行递推和估计,能够确保非线... 针对传统方法在辨识多股螺旋弹簧(以下简称多股簧)非线性响应模型参数时效率较低、精度较差的问题,提出带噪声统计估计器的自适应无迹卡尔曼滤波(AUKF)算法。该算法通过对多股簧试验数据中的量测(过程)噪声进行递推和估计,能够确保非线性模型参数辨识的收敛性;结合多股簧动态试验对该算法进行检验。研究结果表明:即使在量测噪声级别较高的情况下,AUKF算法也可以准确地求出多股簧的动力学模型参数;在预测多股簧动态响应过程中,若预测振幅和参数辨识所用振幅相差太大则会导致较大的预测误差;当加载速度变化时,多股簧动力学模型中的迟滞部分参数基本不变,但0阶非线性刚度系数和非线性放大因子变化较大。 展开更多
关键词 多股螺旋弹簧 参数辨识 非线性迟滞模型 适应无迹卡尔曼滤波算法
在线阅读 下载PDF
基于双自适应卡尔曼滤波的锂电池状态估算 被引量:5
9
作者 黄鹏超 鄂加强 《储能科学与技术》 CAS CSCD 北大核心 2022年第2期660-666,共7页
精准的锂电池建模是保证电池储能系统可靠性至关重要的手段。荷电状态(state of charge,SOC)的准确估计保证了特定应用程序的安全高效运行。为了提高SOC的估计精度,首先建立等效电路模型,利用遗忘因子的偏差补偿最小二乘法(bias compens... 精准的锂电池建模是保证电池储能系统可靠性至关重要的手段。荷电状态(state of charge,SOC)的准确估计保证了特定应用程序的安全高效运行。为了提高SOC的估计精度,首先建立等效电路模型,利用遗忘因子的偏差补偿最小二乘法(bias compensation recursive least squares,BCRLS)对电池模型进行参数辨识。然后,利用自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法来估计SOC。由于无迹无迹卡尔曼滤波算法易受非线性因素的干扰,因此提出了利用权重量定义AUKF算法提高SOC的估计精度。由于电池在放电过程中,电池内部特性会发生变化,而电池欧姆内阻会对SOC估计结果产生直接影响。基于此,本工作提出了双自适应无迹卡尔曼滤波来进一步提高SOC的估计精度。通过和不同算法进行比较,实验结果表明,所提算法估计SOC的误差控制在2%以内,验证了算法的有效性。 展开更多
关键词 锂离子电池 荷电状态 偏差补偿最小二乘法 权重向量 双自适应无迹卡尔曼滤波
在线阅读 下载PDF
直角坐标系下的水下被动目标跟踪自适应卡尔曼滤波算法 被引量:6
10
作者 石章松 王树宗 刘忠 《声学技术》 EI CSCD 2004年第3期173-177,共5页
针对纯方位被动目标跟踪中,直角坐标系下的扩展卡尔曼滤波器容易发散,导致滤波精度很差的情况,文章中提出了一种直角坐标系下自适应卡尔曼滤波算法,对虚拟噪声进行了估计,动态补偿观测模型的线性化误差,削减系统的观测误差,并对其滤波... 针对纯方位被动目标跟踪中,直角坐标系下的扩展卡尔曼滤波器容易发散,导致滤波精度很差的情况,文章中提出了一种直角坐标系下自适应卡尔曼滤波算法,对虚拟噪声进行了估计,动态补偿观测模型的线性化误差,削减系统的观测误差,并对其滤波理论及其算法进行了研究和仿真,结果表明,该算法提高了滤波的稳定性、快速性和精确性,优于一般的扩展卡尔曼滤波算法。 展开更多
关键词 动目标跟踪 适应卡尔曼滤波 算法 纯方位 扩展卡尔曼滤波 线性化 仿真 快速性 动态补偿 虚拟
在线阅读 下载PDF
面向无线传感器网络节点定位的自适应卡尔曼滤波算法收敛条件分析 被引量:1
11
作者 李迅 王建文 +1 位作者 李洪峻 马宏绪 《计算机科学》 CSCD 北大核心 2008年第10期49-52,共4页
分析了新息序列是有色噪声时自适应卡尔曼滤波算法(Adaptive Kal man Filter,AKF)的滤波效果,在范数意义下,证明了k时刻AKF算法中估计误差协方差矩阵和k时刻最优KF算法中估计误差协方差矩阵间距离与新息序列相关性成正比。利用上述结论... 分析了新息序列是有色噪声时自适应卡尔曼滤波算法(Adaptive Kal man Filter,AKF)的滤波效果,在范数意义下,证明了k时刻AKF算法中估计误差协方差矩阵和k时刻最优KF算法中估计误差协方差矩阵间距离与新息序列相关性成正比。利用上述结论,证明了所有AKF算法中估计误差协方差矩阵必逐渐远离1时刻最优KF算法中估计误差协方差矩阵。总结上述结论,发现AKF算法收敛条件可描述成以下几个等价命题:1)AKF算法中估计误差协方差矩阵与1时刻最优KF算法中估计误差协方差矩阵差有极限;2)k时刻AKF算法中估计误差协方差矩阵和k时刻最优KF算法中估计误差方差矩阵间距离极限是0;3)AKF算法渐进收敛于k时刻最优KF算法;4)AKF算法中新息序列渐进收敛于白噪声序列;5)k时刻AKF算法中滤波增益矩阵与k时刻最优KF算法中滤波增益矩阵间距离极限是0。上述理论为最终解决复杂环境下无线传感器网络节点定位问题奠定了基础。 展开更多
关键词 无线传感器网络 节点定位 适应卡尔曼滤波算法 滤波性能分析 滤波收敛性
在线阅读 下载PDF
基于改进自适应无迹卡尔曼滤波的国产民机导航数据滤波算法 被引量:5
12
作者 杨军利 王立新 +1 位作者 钱宇 刘瑜 《科学技术与工程》 北大核心 2021年第35期15123-15129,共7页
针对国产民用飞机导航数据存在杂波不能准确测量的问题,提出一种基于改进自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法的导航数据滤波方法。将无迹卡尔曼滤波(unscented Kalman filter,UKF)与改进Sage-Husa次优无... 针对国产民用飞机导航数据存在杂波不能准确测量的问题,提出一种基于改进自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法的导航数据滤波方法。将无迹卡尔曼滤波(unscented Kalman filter,UKF)与改进Sage-Husa次优无偏极大后验噪声估计器结合构造出改进AUKF,有效解决了在模型不确定或干扰信号统计特性不完全得知的情况下,滤波精度低甚至发散的问题,同时与维纳滤波器和小波阈值法滤波效果进行对比。选择ARJ21飞机实际运行的高度、经度及纬度数据进行仿真。结果表明:改进后的AUKF算法较其他滤波算法精度更高,有效提高了导航数据的可靠性。研究对提高国产民机导航定位精度具有重要意义。 展开更多
关键词 适应无迹卡尔曼滤波 Sage-Husa算法 维纳滤波 小波阈值法 国产民用飞机
在线阅读 下载PDF
基于自适应卡尔曼滤波器的神经网络算法 被引量:1
13
作者 缑娜 王睿 付莹 《弹箭与制导学报》 CSCD 北大核心 2006年第S5期272-274,共3页
针对传统神经网络算法速度慢,容易陷入局部极值的缺点,提出将自适应卡尔曼滤波应用于人工神经网络的训练算法中。把前馈网络中的所有权值、阈值作为自适应卡尔曼滤波算法的状态,网络输出为算法的观测。仿真结果表明,该算法比BP算法在收... 针对传统神经网络算法速度慢,容易陷入局部极值的缺点,提出将自适应卡尔曼滤波应用于人工神经网络的训练算法中。把前馈网络中的所有权值、阈值作为自适应卡尔曼滤波算法的状态,网络输出为算法的观测。仿真结果表明,该算法比BP算法在收敛速度方面有明显提高。 展开更多
关键词 适应卡尔曼滤波算法 BP算法 前馈神经网络
在线阅读 下载PDF
卡尔曼滤波器的自适应算法 被引量:3
14
作者 刘国庆 《南京化工学院学报》 1995年第1期54-58,共5页
通过对一维时不变线性系统的卡尔曼滤波器的理论分析,提出了一种估计并不断修正系统噪声方差R及观察噪声方差Q的自适应算法。
关键词 卡尔曼滤波 噪声 适应 算法
在线阅读 下载PDF
基于遗传算法的电力系统自适应卡尔曼滤波动态状态估计
15
作者 钟志坚 洪彬倬 《广东电力》 2014年第7期78-82,共5页
针对卡尔曼滤波动态状态估计中Holts'两参数均为常数,在电力系统运行状态变化时易产生较大的预测误差的不足,提出采用指数平滑法对参数进行动态调整。该方法在预测步中利用遗传算法来动态确定参数大小,实现了预测参数的自适应优化... 针对卡尔曼滤波动态状态估计中Holts'两参数均为常数,在电力系统运行状态变化时易产生较大的预测误差的不足,提出采用指数平滑法对参数进行动态调整。该方法在预测步中利用遗传算法来动态确定参数大小,实现了预测参数的自适应优化。最后,对IEEE14节点系统进行仿真计算,与传统方法进行比较,结果表明本文方法具有明显的优势。 展开更多
关键词 电力系统 卡尔曼滤波 动态状态估计 适应 遗传算法
在线阅读 下载PDF
双自适应衰减卡尔曼滤波锂电池荷电状态估计 被引量:13
16
作者 赵云飞 徐俊 +2 位作者 王霄 徐浩 梅雪松 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第12期99-105,共7页
针对卡尔曼滤波法在锂离子电池荷电状态(SOC)估计时存在误差较大、收敛较慢等问题,提出了一种双自适应衰减扩展卡尔曼滤波荷电状态估计(DAFEKF)算法。该算法首先设计了针对动力电池的荷电状态估计观测器,利用测得的电流和电压值分别作... 针对卡尔曼滤波法在锂离子电池荷电状态(SOC)估计时存在误差较大、收敛较慢等问题,提出了一种双自适应衰减扩展卡尔曼滤波荷电状态估计(DAFEKF)算法。该算法首先设计了针对动力电池的荷电状态估计观测器,利用测得的电流和电压值分别作为观测器的输入和观测值,结合双自适应衰减扩展卡尔曼滤波估计出观测器中的电池荷电状态,在卡尔曼滤波算法的基础上加入时变衰减因子来减弱过去数据对当前滤波值的影响,并自适应地调整卡尔曼算法中过程噪声和测量噪声协方差。利用DAFEKF算法估计出的SOC结果与扩展卡尔曼滤波(EKF)和自适应扩展卡尔曼滤波(AEKF)算法进行了比较,结果表明,DAFEKF方法具有较好的准确性、鲁棒性和收敛性,使SOC估计误差控制在2%以内。 展开更多
关键词 锂离子电池 荷电状态 适应卡尔曼滤波 扩展卡尔曼滤波 双自适应
在线阅读 下载PDF
基于修正的自适应平方根容积卡尔曼滤波算法 被引量:9
17
作者 李春辉 马健 +3 位作者 杨永建 肖冰松 邓有为 盛涛 《系统工程与电子技术》 EI CSCD 北大核心 2021年第7期1824-1830,共7页
目标建模不确定性会造成滤波算法性能下降,通过构建强跟踪滤波器(strong tracking filter,STF)可以提升滤波算法的自适应性,但是构建STF时存在理论推导复杂、求解计算量大等局限和不足,针对上述问题,在平方根容积卡尔曼滤波(square-root... 目标建模不确定性会造成滤波算法性能下降,通过构建强跟踪滤波器(strong tracking filter,STF)可以提升滤波算法的自适应性,但是构建STF时存在理论推导复杂、求解计算量大等局限和不足,针对上述问题,在平方根容积卡尔曼滤波(square-root cubature Kalman filter,SRCKF)的基础上,提出一种基于修正的自适应SRCKF算法。该算法通过设置判定门限和修正准则,直接对状态预测值或滤波增益进行修正以平衡先验的预测值和后验反馈的量测值在滤波中所占的比重,进而减小状态估计误差。仿真结果表明,所提算法具有在目标状态突变和量测非线性时的良好滤波性能和数值稳定性,同时相比较需要计算渐消因子的STF算法,该算法在计算量和收敛速度上具有优势。 展开更多
关键词 目标建模 平方根容积卡尔曼滤波 修正算法 适应滤波
在线阅读 下载PDF
低复杂度自适应容积卡尔曼滤波算法 被引量:11
18
作者 李春辉 马健 +1 位作者 杨永建 甘轶 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第4期716-724,共9页
确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适... 确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适应CKF算法,通过设立基于新息的自适应修正判决准则和修正方式,直接对状态预测值进行修正,使滤波算法能及时跟上目标真实状态,以提高滤波精度。使用浮点操作数计算并分析了CKF算法、强跟踪CKF算法及所提算法的复杂度,同时将3种算法应用在建模不准确的目标跟踪中,并进行仿真验证。仿真结果表明:在目标建模不匹配的情况下,低复杂度自适应CKF算法和强跟踪CKF算法都能保持较好的滤波精度和数值稳定性,同时所提算法在算法复杂度上有明显改善。 展开更多
关键词 容积卡尔曼滤波(CKF) 目标模型不确定性 强跟踪滤波 适应修正 算法复杂度
在线阅读 下载PDF
自适应卡尔曼滤波与PSO-GA-BP算法的机器人误差补偿 被引量:6
19
作者 李光保 高栋 +2 位作者 路勇 平昊 周愿愿 《中国机械工程》 EI CAS CSCD 北大核心 2023年第20期2456-2465,共10页
采用七轴机器人设备夹持激光器的方式对某型号发射筒进行切割开孔加工。在加工过程中,因轨迹精度和绝对定位精度较低,容易对型号产品发射筒产生损伤和误差切割等问题,运用D-H算法建立七轴机器人理想模型,运用正逆运动学数值算法对理想... 采用七轴机器人设备夹持激光器的方式对某型号发射筒进行切割开孔加工。在加工过程中,因轨迹精度和绝对定位精度较低,容易对型号产品发射筒产生损伤和误差切割等问题,运用D-H算法建立七轴机器人理想模型,运用正逆运动学数值算法对理想模型进行验证,运用理想模型的理论位姿参数和激光跟踪仪的测量位姿参数基于Sage-Husa自适应卡尔曼滤波求解七轴机器人真实位姿坐标信息,得到理想位姿参数和真实位姿坐标信息的关节误差,然后结合粒子群优化-遗传算法-BP神经网络联合算法对七轴机器人建立误差预测模型,采用七轴机器人理论位姿参数作为输入样本,真实位姿与理论位姿的各关节角度差作为输出样本,通过库卡机器人Workvisual 5.0软件按照模型输出值对七轴机器人的各关节角度值进行补偿。经过仿真实验和加工,各关节误差补偿后的七轴机器人轨迹误差和绝对定位误差减小72%,满足工艺要求。 展开更多
关键词 激光切割 七轴机器人 误差补偿 粒子群优化-遗传算法-BP Sage-Husa自适应卡尔曼滤波
在线阅读 下载PDF
基于新息协方差的自适应渐消卡尔曼滤波器 被引量:48
20
作者 徐定杰 贺瑞 +1 位作者 沈锋 盖猛 《系统工程与电子技术》 EI CSCD 北大核心 2011年第12期2696-2699,共4页
自适应渐消卡尔曼滤波采用渐消因子抑制滤波器的记忆长度,当系统模型和噪声模型建立不准确时,能够有效地抑制滤波器的发散。但是现有计算渐消因子的方法公式表达复杂,计算过程繁琐,不利于组合导航等一些实时的应用。针对这种情况,提出... 自适应渐消卡尔曼滤波采用渐消因子抑制滤波器的记忆长度,当系统模型和噪声模型建立不准确时,能够有效地抑制滤波器的发散。但是现有计算渐消因子的方法公式表达复杂,计算过程繁琐,不利于组合导航等一些实时的应用。针对这种情况,提出了一种利用新息协方差计算渐消因子的方法,通过渐消因子自适应地调整误差协方差,补偿不完整信息的影响。该方法计算量小,提高了滤波算法的可靠性。最后,仿真结果证明了该方法的有效性。 展开更多
关键词 卡尔曼滤波 渐消因子 新息协方差 适应算法
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部