期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
具有时滞的双向联想记忆(BAM)的神经网络的全局动力学行为 被引量:7
1
作者 周进 刘曾荣 向兰 《应用数学和力学》 EI CSCD 北大核心 2005年第3期300-308,共9页
 在没有假定关联函数的光滑性,单调性和有界性的条件下,应用Liapunov泛函方法和矩阵代数技术,得到具有常数传输时滞的双向联想记忆(BAM)的神经网络模型平衡点存在性和全局指数稳定性的一些新的充分条件,这些条件可以由网络参数,连接矩...  在没有假定关联函数的光滑性,单调性和有界性的条件下,应用Liapunov泛函方法和矩阵代数技术,得到具有常数传输时滞的双向联想记忆(BAM)的神经网络模型平衡点存在性和全局指数稳定性的一些新的充分条件,这些条件可以由网络参数,连接矩阵和关联函数的Lipschitz常数所表示的M矩阵来刻化· 这些结果不仅是简单和实用的。 展开更多
关键词 联想记忆(bam) 神经网络 全局指数稳定 LIAPUNOV泛函
在线阅读 下载PDF
一种用于模式识别的新型神经网络模型 被引量:1
2
作者 田凯 郑丽颖 王科俊 《哈尔滨工程大学学报》 EI CAS CSCD 2002年第6期82-84,共3页
双向联想记忆(BAM)网络和BP网络是两种重要的神经网络模型,研究结果表明将BAM网络的输入用40%的噪声污染,这种网络仍然可以实现正确联想.另一方面BAM网络有一个严重的缺点就是它无法实现数据压缩,而BP网络却恰恰能够很好地实现数据压缩... 双向联想记忆(BAM)网络和BP网络是两种重要的神经网络模型,研究结果表明将BAM网络的输入用40%的噪声污染,这种网络仍然可以实现正确联想.另一方面BAM网络有一个严重的缺点就是它无法实现数据压缩,而BP网络却恰恰能够很好地实现数据压缩,但它的容错性不好.本文同时从识别率和节省存储空间两方面出发,提出了一种BAM-BP神经网络模型.该模型具有容错性好、识别率高、简单等优点. 展开更多
关键词 联想记忆(bam) BP神经网络 模式识别 误差反传(BP)学习算法 bam-BP神经网络
在线阅读 下载PDF
时滞标准神经网络模型及其应用 被引量:4
3
作者 刘妹琴 《自动化学报》 EI CSCD 北大核心 2005年第5期750-758,共9页
提出一种新的神经网络模型—时滞标准神经网络模型(DSNNM),它由线性动力学系统和有界静态时滞非线性算子连接而成.利用不同的Lyapunov 泛函和S 方法推导出DSNNM 全局渐近稳定性和全局指数稳定性的充分条件,这些条件可表示为线性矩阵不等... 提出一种新的神经网络模型—时滞标准神经网络模型(DSNNM),它由线性动力学系统和有界静态时滞非线性算子连接而成.利用不同的Lyapunov 泛函和S 方法推导出DSNNM 全局渐近稳定性和全局指数稳定性的充分条件,这些条件可表示为线性矩阵不等式(LMI)形式.大多数时滞(或非时滞)动态神经网络(DANN)稳定性分析或神经网络控制系统都可以转化为DSNNM,以便用统一的方法进行稳定性分析或镇定控制.从DSNNM 应用于时滞联想记忆(BAM)神经网络的稳定性分析以及PH 中和过程神经控制器的综合实例, 可以看出,得到的稳定性判据扩展并改进了以往文献中的稳定性定理,而且可将稳定性分析推广到非线性控制系统的综合. 展开更多
关键词 时滞标准神经网络模型(DSNNM) 线性矩阵不等式(LMI) 稳定性 广义特征值问题(GEVP) 联想记忆(bam)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部