期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CNN和Efficient Transformer的多尺度遥感图像语义分割算法
1
作者 张振利 胡新凯 +2 位作者 李凡 冯志成 陈智超 《浙江大学学报(工学版)》 北大核心 2025年第4期778-786,共9页
针对现有方法存在遥感图像的多尺度地物特征提取困难和目标边缘分割不准确的问题,提出新的语义分割算法.利用CNN和Efficient Transformer构建双编码器,解耦上下文信息和空间信息.提出特征融合模块加强编码器间的信息交互,有效融合全局... 针对现有方法存在遥感图像的多尺度地物特征提取困难和目标边缘分割不准确的问题,提出新的语义分割算法.利用CNN和Efficient Transformer构建双编码器,解耦上下文信息和空间信息.提出特征融合模块加强编码器间的信息交互,有效融合全局上下文信息和局部细节信息.构建分层Transformer结构提取不同尺度的特征信息,使编码器有效专注不同尺度的物体.提出边缘细化损失函数,缓解遥感图像目标边缘分割不准确的问题.实验结果表明,在ISPRS Vaihingen和ISPRS Potsdam数据集上,所提算法的平均交并比(MIoU)分别为72.45%和82.29%.在SAMRS数据集中的SOTA、SIOR和FAST子集上,所提算法的MIoU分别为88.81%、97.29%和86.65%,总体精度和平均交并比指标均优于对比模型.所提算法在各类不同尺度的目标上有较好的分割性能. 展开更多
关键词 遥感图像 语义分割 双编码器结构 特征融合 Efficient Transformer
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部