期刊文献+
共找到283篇文章
< 1 2 15 >
每页显示 20 50 100
一种带有三重选择机制的多种群多策略差分进化算法
1
作者 宋晓宇 李敏 赵明 《计算机应用研究》 北大核心 2025年第3期795-803,共9页
针对差分进化算法(differential evolution,DE)在寻优过程中易陷入局部最优以及求解精度不高的问题,提出一种带有三重选择机制的多种群多策略差分进化算法(TSMDE)。该算法采用分层种群结构,利用适应度值将种群划分为三个子种群,且子种... 针对差分进化算法(differential evolution,DE)在寻优过程中易陷入局部最优以及求解精度不高的问题,提出一种带有三重选择机制的多种群多策略差分进化算法(TSMDE)。该算法采用分层种群结构,利用适应度值将种群划分为三个子种群,且子种群的大小随迭代动态调整。同时,采用五个改进的突变策略以及不同的参数自适应方式,以满足个体在不同进化阶段的开发与探索需求。为了充分发挥多种群的优势,提出一种高效的信息共享机制——三重选择机制。各子种群先根据不同模式选择执行突变的个体,然后该个体根据自身进化状态选择合适的突变策略,最后判断出该个体处于停滞状态后从两个外部存档中选择一个候选解进行替换,最终通过三重选择机制引导整个种群的进化进程。最后,将TSMDE与13个先进的差分进化(DE)变体进行对比,以验证TSMDE的有效性。在CEC2014测试集中的30个基准函数上的实验结果表明,该算法在求解精度、避免陷入局部最优等方面的能力优于或比得上这13个先进算法。 展开更多
关键词 差分进化 分层种群 多策略 三重选择机制 参数自适应
在线阅读 下载PDF
融合自适应变异策略与差分进化算法的油藏自动历史拟合方法
2
作者 张金鼎 张凯 +2 位作者 张黎明 刘丕养 陈旭 《油气地质与采收率》 北大核心 2025年第2期152-162,共11页
差分进化算法作为一种经典的进化算法,具有全局搜索能力、便于实现、无需梯度等优势,在油藏自动历史拟合中广泛应用,但算法中参数的设置对历史拟合结果影响较大,在高维问题中存在着收敛停滞的问题。为解决上述难题,提出一种融合自适应... 差分进化算法作为一种经典的进化算法,具有全局搜索能力、便于实现、无需梯度等优势,在油藏自动历史拟合中广泛应用,但算法中参数的设置对历史拟合结果影响较大,在高维问题中存在着收敛停滞的问题。为解决上述难题,提出一种融合自适应变异策略与差分进化算法的油藏自动历史拟合方法。首先,基于主成分分析方法对油藏模型的高维参数进行降维,将降维后的参数作为差分进化算法中调整的参数,以压缩变量的搜索空间,提升算法搜索效率;其次,结合自适应变异策略与差分进化算法,借助于算法搜索过程中的历史经验指导当前种群的更新,当种群个体停止收敛时,则切换差分进化算法的变异策略,改变种群的迭代更新方式,以此避免油藏参数停止优化调整的情况;此外,为使更新后模型参数与先验分布特征保持一致,应用分位数变换策略转换更新后参数的分布情况,将非高斯分布的数据变换为高斯分布,使更新后的模型更加符合实际地质参数的约束条件。提出算法在三维油藏模型上进行测试验证,结果表明:相比传统的差分进化算法框架,改进的差分进化算法不仅能够提升历史拟合求解的收敛效果,而且反演的油藏模型参数更加符合实际地质特征,在相同的计算条件下,可获得更优的历史拟合模型,数据拟合效果更显著。 展开更多
关键词 油藏数值模拟 自动历史拟合 差分进化算法 自适应方法 分位数变换
在线阅读 下载PDF
面向复杂约束多目标优化问题的双种群双阶段进化算法
3
作者 袁志超 杨磊 +2 位作者 田井林 魏晓威 李康顺 《计算机应用》 北大核心 2025年第8期2656-2665,共10页
针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行... 针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。 展开更多
关键词 约束多目标优化 种群 阶段 进化算法 约束处理方法 分类方法 随机扰动
在线阅读 下载PDF
基于双档案种群大小自适应方法的改进差分进化算法
4
作者 黄亚伟 钱雪忠 宋威 《计算机应用》 CSCD 北大核心 2024年第12期3844-3853,共10页
针对现有差分进化(DE)算法在处理种群多样性降低和局部最优问题时,种群大小改进方法的性能不足,提出一种基于双档案种群大小自适应方法(APSA)的差分进化算法(APDE)。首先,构建2个档案分别用于记录在先前进化中丢弃的个体和实验个体;其次... 针对现有差分进化(DE)算法在处理种群多样性降低和局部最优问题时,种群大小改进方法的性能不足,提出一种基于双档案种群大小自适应方法(APSA)的差分进化算法(APDE)。首先,构建2个档案分别用于记录在先前进化中丢弃的个体和实验个体;其次,根据种群分布状态变化衡量多样性变化,并在多样性下降时从档案中选择个体加入种群,从而提升种群的多样性并增强跳出局部最优的能力;最后,基于APSA方法,提出一种改进的DE算法——APDE。在CEC2017测试集和兰纳-琼斯势问题上的广泛测试结果表明,APDE算法在30个测试函数上的基于Friedman test的平均排名中优于其他5种DE算法,并在至少20%的测试函数上取得了显著提升;同时,APDE算法在解决势能最小化上也取得了最佳性能。 展开更多
关键词 差分进化算法 档案 多样性度量 自适应种群大小 数值优化
在线阅读 下载PDF
自扰动和极性维度交互的自适应差分进化算法
5
作者 翟雪玉 杨卫中 《计算机科学》 北大核心 2025年第S1期629-642,共14页
针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimensi... 针对差分进化算法在应对多模态复杂优化问题时面临种群多样性丧失和过早收敛的缺陷,提出了一种基于自扰动和极性维度交互的自适应差分进化算法(Adaptive Differential Evolution Based on Self-guided Perturbation and Extreme Dimension Exchange,APE-DE)。首先,设计了一种自扰动补偿策略,通过个体的空间位置来引导其搜索方向,有效避免了算法易陷入局部最优的困境。然后,提出了一种极性维度交互策略,用于提升算法多样性,一旦种群被检测出停滞,将启动相应的增强方案。最后,提出了一种自适应参数控制策略,通过小波基函数和适应度分布偏差信息实时捕捉种群适应度的变化,并据此动态调整算法参数。为了验证APE-DE的性能,在被广泛使用的IEEE CEC2017数据集上进行了实验,以验证算法面对多模态及复杂测试环境下的性能。实验结果表明,与8种最先进的差分进化变体相比,APE-DE在收敛精度和收敛速度方面均展现出了显著的优势。此外,为了评估APE-DE在解决现实问题中的有效性,将所提算法应用于光伏模型的参数识别问题。 展开更多
关键词 差分进化算法 参数自适应 自引导扰动补偿 极性维度交互 多样性增强
在线阅读 下载PDF
面向高维多目标优化的双阶段双种群进化算法 被引量:4
6
作者 曹嘉乐 杨磊 +2 位作者 田井林 李华德 李康顺 《计算机工程与应用》 CSCD 北大核心 2024年第9期159-171,共13页
随着目标维度的上升,高维多目标优化问题的帕累托前沿越来越复杂,传统的基于分解的高维多目标进化算法难以挑选出多样性和收敛性良好的种群。针对以上问题提出了一种面向高维多目标优化的双阶段双种群进化算法。该算法将进化过程划分为... 随着目标维度的上升,高维多目标优化问题的帕累托前沿越来越复杂,传统的基于分解的高维多目标进化算法难以挑选出多样性和收敛性良好的种群。针对以上问题提出了一种面向高维多目标优化的双阶段双种群进化算法。该算法将进化过程划分为两个阶段,在第一阶段判断帕累托前沿的形状是否规则,而在第二阶段则根据帕累前沿的形状选择是否对权重向量进行调整,以保证种群在规则及不规则帕累托前沿上都能获得良好的多样性。为了对权重向量进行调整且不影响算法的收敛性,该算法使用了两个种群进行进化,一个主种群正常进化,另一个辅种群作为权重向量。为了在不规则的帕累托前沿上获得一组适应种群分布的权重向量,引入了自然界中能量平衡的概念收集了多样性良好的辅种群作为权重向量。将提出的算法与其他算法在3-10目标的测试问题上进行比较。实验结果表明,提出的算法在大多数测试问题上性能优于比较的算法。 展开更多
关键词 高维多目标优化 进化算法 阶段 种群 权重向量 能量平衡
在线阅读 下载PDF
一种多种群进化和差分变异的鲸鱼优化算法 被引量:5
7
作者 朱杰 付伟 +3 位作者 马宁 季伟东 苏婷 陈珊 《小型微型计算机系统》 CSCD 北大核心 2024年第11期2618-2627,共10页
针对鲸鱼优化算法容易陷入局部最优,求解精度低,收敛速度慢,提出了一种多种群进化和差分变异的鲸鱼优化算法(MDWOA).首先,根据适应度值将种群划分为两个大小相等的子种群,并为每个子种群分配不同的移动策略,以平衡全局和局部搜索能力.其... 针对鲸鱼优化算法容易陷入局部最优,求解精度低,收敛速度慢,提出了一种多种群进化和差分变异的鲸鱼优化算法(MDWOA).首先,根据适应度值将种群划分为两个大小相等的子种群,并为每个子种群分配不同的移动策略,以平衡全局和局部搜索能力.其次,设计了一种种群进化和差分变异的策略来帮助MDWOA提高收敛速度,避免其陷入局部最优.最后,引入反向学习策略,增加种群多样性.将MDWOA与多种优化算法在13个基准函数上进行仿真测试,非参数检验的结果表明相较于其他优化算法来说改进的算法具有更高的精度和稳定性.在此基础上,建立了基于MDWOA优化BP神经网络模型,预测波士顿房价的实验结果表明所提出的预测模型具有更好的预测性能和有效性. 展开更多
关键词 种群进化 差分变异 鲸鱼优化算法 反向学习 MDWOA-BP神经网络
在线阅读 下载PDF
深度强化学习引导的多种群协同进化超多目标优化算法
8
作者 许莹 刘佳 +2 位作者 陈斌辉 刘益萍 刘志中 《计算机学报》 北大核心 2025年第10期2371-2405,共35页
超多目标优化问题因高维决策空间与复杂计算成本等特点而极具挑战。作为求解方法之一,多种群协同进化算法通过协同机制在求解此类问题时有较好的效果,但仍存在计算成本高、搜索效率低等局限性。近年来,强化学习因其卓越的决策能力被引... 超多目标优化问题因高维决策空间与复杂计算成本等特点而极具挑战。作为求解方法之一,多种群协同进化算法通过协同机制在求解此类问题时有较好的效果,但仍存在计算成本高、搜索效率低等局限性。近年来,强化学习因其卓越的决策能力被引入进化算法框架,成为提升算法性能的关键技术。因此,本文提出了一种深度强化学习引导的多种群协同进化超多目标优化算法DQNMaOEA,用于求解复杂的超多目标优化问题。为了有效引导大规模决策空间的搜索,提高算法在高维目标空间的搜索能力,本文提出了一种基于深度强化学习模型的自适应子种群选择方法,通过强化学习与环境进行交互选择具有更高潜力的子种群,然后与基于效用值选择的子种群进行协同进化,产生具有更优多样性与收敛性的子代解。此外,为了降低计算成本,提高算法的搜索效率,本文进一步提出了一种自适应子种群计算资源分配策略,根据当前子种群对整个种群优化过程的效用值改进贡献,动态分配子种群的适应值评估次数。为了验证算法及相关策略的性能,本文在大量基准测试集问题及实际物流大规模超多目标车辆路径问题实例上,与现有的不同类型前沿算法进行了大量对比实验。实验分析表明,本文提出的算法在求解性能与解质量上显著优于大部分对比算法。具体表现为:在评估解收敛性与多样性的综合指标上,DQNMaOEA在80%以上的基准测试实例中取得最优结果,较现有最佳算法的平均性能指标提升达1.2~2.0倍。而在计算效率方面,算法的平均运行时间较对比算法降低约25%。特别地,在7个实际物流问题实例中,算法在解的性能指标上获得6项最优结果,且求解效率显著优于对比算法。这些结果充分验证了该算法在解质量、计算效率和实际应用潜力上的综合优势。 展开更多
关键词 超多目标优化 超多目标进化算法 自适应种群选择 自适应计算资源分配 强化学习
在线阅读 下载PDF
基于交叉变异策略的双种群差分进化算法 被引量:10
9
作者 谭跃 谭冠政 伍雪冬 《计算机工程与应用》 CSCD 北大核心 2010年第18期9-12,共4页
为加强差分进化算法的全局搜索能力,提出了一种基于交叉变异策略的双种群差分进化算法(CMDPDE)。CMDPDE中,两个种群分别采用大小不同的缩放因子和交叉因子,在每代进化完毕后,对其中缩放因子和交叉因子较小的种群执行交叉或变异策略来寻... 为加强差分进化算法的全局搜索能力,提出了一种基于交叉变异策略的双种群差分进化算法(CMDPDE)。CMDPDE中,两个种群分别采用大小不同的缩放因子和交叉因子,在每代进化完毕后,对其中缩放因子和交叉因子较小的种群执行交叉或变异策略来寻找更优的个体,同时两个种群之间每10代进行一次信息交流。这种方式与单种群差分进化算法相比,可以通过双种群和交叉变异策略来增加解的多样性,使算法能在更大的范围内寻优。6个Benchmark函数的实验结果证明CMDPDE具有较好的寻优能力。 展开更多
关键词 交叉 变异 种群 差分进化
在线阅读 下载PDF
多种群并行的自适应差分进化算法 被引量:10
10
作者 葛延峰 金文静 +1 位作者 高立群 冯达 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期481-484,共4页
为了提高搜索速度,同时克服传统算法过早陷入局部最优值的不足,提出了一种改进自适应差分进化算法.改进算法在充分分析经典和改进变异操作算子的属性以及种群统计信息的基础上,按照个体适应度的差异,将个体分成不同的子种群并相应地引... 为了提高搜索速度,同时克服传统算法过早陷入局部最优值的不足,提出了一种改进自适应差分进化算法.改进算法在充分分析经典和改进变异操作算子的属性以及种群统计信息的基础上,按照个体适应度的差异,将个体分成不同的子种群并相应地引入与之匹配的变异算子,转换成一个多种群并行的优化问题,保证在加快算法收敛速度的同时有效跳出局部极值点,从而实现全局优化.同时对参数值实行自适应调整,使算法达到全局搜索能力与局部搜索能力的平衡.针对8个标准测试函数的仿真实验结果表明,所提出的算法与其他算法相比具有较好的效果. 展开更多
关键词 差分进化算法 种群 自适应调整 全局优化 局部最优
在线阅读 下载PDF
基于种群自适应调整的多目标差分进化算法 被引量:5
11
作者 郑建国 陈克明 蔡万刚 《运筹与管理》 CSSCI CSCD 北大核心 2017年第6期29-34,共6页
为提高已有多目标进化算法在求解复杂多目标优化问题上的收敛性和解集分布性,提出一种基于种群自适应调整的多目标差分进化算法。该算法设计一个种群扩增策略,它在决策空间生成一些新个体帮助搜索更优的非支配解;设计了一个种群收缩策略... 为提高已有多目标进化算法在求解复杂多目标优化问题上的收敛性和解集分布性,提出一种基于种群自适应调整的多目标差分进化算法。该算法设计一个种群扩增策略,它在决策空间生成一些新个体帮助搜索更优的非支配解;设计了一个种群收缩策略,它依据对非支配解集的贡献程度淘汰较差的个体以减少计算负荷,并预留一些空间给新的带有种群多样性的扰动个体;引入精英学习策略,防止算法陷入局部收敛。通过典型的多目标优化函数对算法进行测试验证,结果表明所提算法相对于其他算法具有明显的优势,其性能优越,能够在保证良好收敛性的同时,使获得的Pareto最优解集具有更均匀的分布性和更广的覆盖范围,尤其适合于高维复杂多目标优化问题的求解。 展开更多
关键词 多目标优化 种群扩增 种群缩减 差分进化算法 精英学习策略
在线阅读 下载PDF
双种群差分进化规划算法 被引量:3
12
作者 何兵 车林仙 刘初升 《计算机工程与应用》 CSCD 2012年第26期25-31,共7页
标准差分进化算法(SDE)具有算法简单,控制参数少,易于实现等优点。但在难优化问题中,算法存在收敛速度较慢和容易早熟等缺陷。为克服此缺点,提出一种改进算法——双种群差分进化规划算法(BGDEP)。该算法将种群划分为两个子群独立进化,... 标准差分进化算法(SDE)具有算法简单,控制参数少,易于实现等优点。但在难优化问题中,算法存在收敛速度较慢和容易早熟等缺陷。为克服此缺点,提出一种改进算法——双种群差分进化规划算法(BGDEP)。该算法将种群划分为两个子群独立进化,分别采用DE/rand/1/bin和DE/best/2/bin版本生成变异个体。每隔δt(取5~10)代,将两个子群合并为一个种群,再应用混沌重组算子将之划分为两个子群,以实现子群间的信息交流。在双种群协同差分进化的同时,应用非均匀变异算子对其最优个体执行进化规划操作,使得算法具有较快的收敛速度和较强的全局寻优能力。为测试BGDEP的性能,给出了4个30维benchmark函数优化问题的对比数值实验。结果表明,BGDEP的求解精度、收敛速度、鲁棒性等性能优于SDE、双种群差分进化(BGDE)和非均匀变异进化规划(NUMEP)等4种算法。 展开更多
关键词 差分进化算法 进化规划算法 种群 混沌重组策略 非均匀变异
在线阅读 下载PDF
改进种群多样性的双变异差分进化算法 被引量:12
13
作者 李荣雨 陈庆倩 陈菲尔 《运筹学学报》 CSCD 北大核心 2017年第1期44-54,共11页
差分进化算法(DE)是一种基于种群的启发式随机搜索技术,对于解决连续性优化问题具有较强的鲁棒性.然而传统差分进化算法存在种群多样性和收敛速度之间的矛盾,一种改进种群多样性的双变异差分进化算法(DADE),通过引入BFS-best机制(基于... 差分进化算法(DE)是一种基于种群的启发式随机搜索技术,对于解决连续性优化问题具有较强的鲁棒性.然而传统差分进化算法存在种群多样性和收敛速度之间的矛盾,一种改进种群多样性的双变异差分进化算法(DADE),通过引入BFS-best机制(基于排序的可行解选取递减策略)改进变异算子"DE/current-to-best",将其与DE/rand/1构成双变异策略来改善DE算法中种群多样性减少的问题.同时,每个个体的控制参数基于排序自适应更新.最后,利用多个CEC2013标准测试函数对改进算法进行测试,实验结果表明,改进后的算法能有效改善种群多样性,较好地提高了算法的全局收敛能力和收敛速度. 展开更多
关键词 差分进化 种群多样性 变异策略 排序
在线阅读 下载PDF
自适应双模式差分进化算法 被引量:3
14
作者 呼忠权 王洪斌 李硕 《计算机工程与设计》 北大核心 2015年第8期2250-2254,2270,共6页
为解决无约束全局最优问题,提出自适应双变异模式差分进化算法。该算法的变异规则结合差分进化算法中的两种基本变异模式,通过采用自适应缩放因子和交叉概率,来改善种群的多样性,平衡全局搜索和局部寻优能力。对高维benchmark典型函数... 为解决无约束全局最优问题,提出自适应双变异模式差分进化算法。该算法的变异规则结合差分进化算法中的两种基本变异模式,通过采用自适应缩放因子和交叉概率,来改善种群的多样性,平衡全局搜索和局部寻优能力。对高维benchmark典型函数进行数值仿真,与另外5种算法进行比较,比较结果表明,该算法具有较高的搜索精度、收敛速度以及较强的跳出局部最优解的能力。 展开更多
关键词 差分进化算法 进化模式 自适应 收敛速度 高维问题
在线阅读 下载PDF
基于多种群的自适应差分进化算法 被引量:5
15
作者 卢峰 高立群 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第11期1538-1541,共4页
在分析了经典和改进变异操作算子的属性以及种群统计信息的基础上,按照个体适应度的差异,将个体分成不同的子种群并针对不同的个体适应度值,采用不同的变异算子,以保证在加快算法收敛速度的同时有效地跳出局部极值点.在参考经验值的基础... 在分析了经典和改进变异操作算子的属性以及种群统计信息的基础上,按照个体适应度的差异,将个体分成不同的子种群并针对不同的个体适应度值,采用不同的变异算子,以保证在加快算法收敛速度的同时有效地跳出局部极值点.在参考经验值的基础上,加以自适应调整,使算法达到全局搜索能力与局部搜索能力的平衡.针对13个标准测试函数的仿真实验结果表明,所提出的算法与其他算法相比较具有较好的效果. 展开更多
关键词 进化算法 差分进化 全局优化 变异操作 自适应
在线阅读 下载PDF
基于精英区域学习的多种群自适应的差分进化算法 被引量:2
16
作者 蔡万刚 蔡志伟 郑建国 《运筹与管理》 CSSCI CSCD 北大核心 2017年第8期27-33,共7页
为了进一步提高差分进化算法的收敛速度、算法精度和稳定性,采用多种群技术来增加算法收敛速度和降低复杂度;利用精英区域学习策略来对算法的全局搜索能力和算法精度进一步提升,引进自适应免疫搜索策略,以实现自适应修正差分算法的变异... 为了进一步提高差分进化算法的收敛速度、算法精度和稳定性,采用多种群技术来增加算法收敛速度和降低复杂度;利用精英区域学习策略来对算法的全局搜索能力和算法精度进一步提升,引进自适应免疫搜索策略,以实现自适应修正差分算法的变异因子和交叉因子。通过五个测试函数,把本文算法与最新文献中的算法进行对比,表明算法在收敛速度、精度和高维问题寻优能力方面的优越性。 展开更多
关键词 差分进化算法 种群技术 免疫自适应搜索策略 精英区域学习策略
在线阅读 下载PDF
基于蜜蜂双种群进化机制的云自适应遗传算法 被引量:3
17
作者 卢雪燕 周永权 《计算机应用》 CSCD 北大核心 2008年第12期3068-3071,共4页
为了提高传统自适应遗传算法的鲁棒性,受蜜蜂双种群进化的机制启发,把雄蜂通过竞争参与交叉及雄蜂与决定双蜂群优秀遗传基因的蜂后交叉的机制引入算法中,再利用正态云模型云滴的随机性和稳定倾向性特点,提出了基于蜜蜂双种群进化机制的... 为了提高传统自适应遗传算法的鲁棒性,受蜜蜂双种群进化的机制启发,把雄蜂通过竞争参与交叉及雄蜂与决定双蜂群优秀遗传基因的蜂后交叉的机制引入算法中,再利用正态云模型云滴的随机性和稳定倾向性特点,提出了基于蜜蜂双种群进化机制的云自适应遗传算法。算法由正态云模型的Y条件云发生器及蜂后参与的方式实现交叉操作,基本云发生器实现变异操作。函数优化实验和暴雨强度公式参数优化的仿真结果表明了算法的有效性和可行性。 展开更多
关键词 蜜蜂种群 自适应 遗传算法
在线阅读 下载PDF
基于双种群的小生境差分进化算法 被引量:3
18
作者 宁桂英 周永权 《计算机应用与软件》 CSCD 2009年第3期29-31,58,共4页
将非线性方程组的求解问题转化为函数优化问题,当方程组有多个解时,它的适应值函数就是具有多个最优解的多峰函数。为此,提出了基于双种群的小生境差分进化算法。在该算法中,进化在两个不同的子群间并行进行,通过使用不同的变异策略,实... 将非线性方程组的求解问题转化为函数优化问题,当方程组有多个解时,它的适应值函数就是具有多个最优解的多峰函数。为此,提出了基于双种群的小生境差分进化算法。在该算法中,进化在两个不同的子群间并行进行,通过使用不同的变异策略,实现种群在解空间具有尽可能分散的探索能力的同时在局部具有尽可能细致的搜索能力。通过子群重组实现子群间的信息交换,然后引入小生境淘汰机制。对典型测试函数的优化结果表明,该算法能找到全部解,而且精度好。 展开更多
关键词 差分进化 种群 小生境 非线性方程组
在线阅读 下载PDF
基于蜜蜂双种群进化型云自适应遗传算法的电力系统多目标无功优化 被引量:4
19
作者 周海忠 周步祥 +3 位作者 何春渝 周岐杰 彭章刚 王精卫 《电测与仪表》 北大核心 2016年第5期103-108,共6页
针对遗传算法在求解多目标无功优化方面存在的缺陷,文章提出了基于蜜蜂双种群进化型云自适应遗传算法(double bee population evolutionary cloud adaptive genetic algorithm,BEPE-CAGA)。该算法根据蜜蜂双种群进化思想,引入了雄峰通... 针对遗传算法在求解多目标无功优化方面存在的缺陷,文章提出了基于蜜蜂双种群进化型云自适应遗传算法(double bee population evolutionary cloud adaptive genetic algorithm,BEPE-CAGA)。该算法根据蜜蜂双种群进化思想,引入了雄峰通过竞争参与交叉及雄峰与决定双峰群优秀遗传基因的蜂后交叉的策略,并结合正态云模型云滴的随机性和稳定倾向性特点对其进行改进,改善了算法陷入早熟的问题,提高了算法的收敛速度。建立了以有功网损最小、电压偏差最小及电压稳定裕度最大为目标的无功优化数学模型,并以BEPE-CAGA算法求解该模型。最后通过对IEEE14和IEEE30节点系统进行算例仿真,仿真结果验证了文章所提算法的有效性,同时也证明了该算法在收敛速度和优化效果上具有比基本GA算法和CAGA算法更佳的性能。 展开更多
关键词 蜜蜂种群 自适应 多目标 无功优化 遗传算法
在线阅读 下载PDF
求解电动汽车车辆路径问题的双种群协同进化算法 被引量:3
20
作者 王朝 秦芳 +1 位作者 刘蓉蓉 江浩 《智能系统学报》 CSCD 北大核心 2024年第2期438-445,共8页
绿色物流领域新兴的电动汽车车辆路径问题,由于需要对车辆路径和充电决策同时优化,搜索空间急剧增大,且需要同时满足容量和电量双重约束,现有方法难以快速找到质量较优的可行解。为此,提出一种基于双种群的协同进化算法,通过忽略电量约... 绿色物流领域新兴的电动汽车车辆路径问题,由于需要对车辆路径和充电决策同时优化,搜索空间急剧增大,且需要同时满足容量和电量双重约束,现有方法难以快速找到质量较优的可行解。为此,提出一种基于双种群的协同进化算法,通过忽略电量约束构造简单带容量约束的车辆路径问题,辅助原始复杂问题的快速求解。为实现其间信息交互,设计一种基于改进距离邻接矩阵的解序列特征表示方法,旨在同时获取客户访问顺序和车辆指派信息;利用降噪自编码器构建2个问题解之间转换关系,以实现问题域间知识迁移。将该算法与目前常用的3种启发式算法和2种进化算法在不同规模测试集上进行对比,试验结果表明所提算法具有更快收敛速度且所获解集具有更好收敛性。 展开更多
关键词 绿色物流 电动汽车车辆路径问题 电量约束 种群 进化算法 距离邻接矩阵 降噪自编码器 知识迁移
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部