期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Double-DQN的中央空调系统节能优化运行 被引量:14
1
作者 闫军威 黄琪 周璇 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第1期135-144,共10页
针对中央空调系统机理建模困难和参数辨识工作较为复杂的问题,提出了一种基于自适应建模和自学习机制的中央空调系统节能优化运行方法;设计了空调系统马尔可夫决策过程模型,采用具有双神经网络结构的强化学习算法解决学习过程中容易产... 针对中央空调系统机理建模困难和参数辨识工作较为复杂的问题,提出了一种基于自适应建模和自学习机制的中央空调系统节能优化运行方法;设计了空调系统马尔可夫决策过程模型,采用具有双神经网络结构的强化学习算法解决学习过程中容易产生的维数灾难和值函数过估计问题.然后以广州市某办公建筑中央空调系统为研究对象,建立该系统的TRNSYS仿真平台,对算法的有效性进行了验证.仿真结果表明:该方法在满足室内热舒适性要求的前提下,以系统能耗最小为目标,实现了系统的节能优化运行;与PID控制和单神经网络强化学习控制方法相比,系统总能耗分别降低5.36%和1.64%,非舒适性时间总占比分别减少2.32%和1.37%.文中提出的强化学习控制器能够有效解决值函数过估计问题,具有良好的鲁棒性,自适应优化能力和较好的节能效果,可为建筑节能提供新思路. 展开更多
关键词 中央空调系统 节能优化运行 强化学习 Double-DQN算法 双神经网络结构 总能耗 室内热舒适性
在线阅读 下载PDF
基于Double Deep Q Network的无人机隐蔽接敌策略 被引量:10
2
作者 何金 丁勇 高振龙 《电光与控制》 CSCD 北大核心 2020年第7期52-57,共6页
基于深度强化学习的连续状态空间无人机隐蔽接敌问题,提出了基于马尔可夫决策过程的隐蔽接敌双深度Q网络(DDQN)方法。利用DDQN生成目标值函数的方法解决了传统DQN的过拟合问题;采用按优先级随机抽样的方法获取训练样本,加速了神经网络... 基于深度强化学习的连续状态空间无人机隐蔽接敌问题,提出了基于马尔可夫决策过程的隐蔽接敌双深度Q网络(DDQN)方法。利用DDQN生成目标值函数的方法解决了传统DQN的过拟合问题;采用按优先级随机抽样的方法获取训练样本,加速了神经网络的训练速度;设定贪婪系数按照指数下降的方法,解决了传统强化学习的“探索利用窘境”;在势函数奖赏函数设计中引入角度因子,使其更加符合实际作战情况。仿真实验结果表明,DDQN具有较好的收敛性,能有效生成隐蔽接敌策略。 展开更多
关键词 隐蔽接敌策略 空战决策 马尔可夫决策过程 双神经网络结构 DDQN算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部