期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多模态特征工程和TSNet的心脏异常检测算法
1
作者 刘纪红 薛维 徐超 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第10期1394-1400,1520,共8页
心电图(electrocardiogram,ECG)和心音图(phonocardiogram,PCG)是心脏疾病诊断中常用的图像,单一的方法进行心脏疾病诊断效果不佳.基于多模态特征工程,数据集经过切分和归一化预处理后,使用格拉姆角场(Gramian angle fields,GAF)进行时... 心电图(electrocardiogram,ECG)和心音图(phonocardiogram,PCG)是心脏疾病诊断中常用的图像,单一的方法进行心脏疾病诊断效果不佳.基于多模态特征工程,数据集经过切分和归一化预处理后,使用格拉姆角场(Gramian angle fields,GAF)进行时间序列数据重建,形成图像模型.提出一种适用于该图像模型的双流自融合网络(two‑stream self‑fusion network,TSNet),使用双流自融合(two‑stream self‑fusion,TS)模块替代底层卷积操作,更好地融合ECG和PCG的异构信息.经Physio Net Challenge 2016 a数据集测试,该算法的准确率、F1值、精确率和召回率最佳值分别达到95.3%,95.4%,96.2%,99.4%,相较其他心电和心音多模态卷积神经网络算法,精度更高. 展开更多
关键词 心电图 心音图 多模态特征工程 格拉姆角场 双流自融合网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部