期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于双流-非局部时空残差卷积神经网络的人体行为识别 被引量:1
1
作者 钱惠敏 陈实 皇甫晓瑛 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期1100-1108,共9页
3维卷积神经网络(3D CNN)与双流卷积神经网络(two-stream CNN)是视频中人体行为识别研究的常用架构,且各有优势。该文旨在研究结合两种架构且复杂度低、识别精度高的人体行为识别模型。具体地,该文提出基于通道剪枝的双流-非局部时空残... 3维卷积神经网络(3D CNN)与双流卷积神经网络(two-stream CNN)是视频中人体行为识别研究的常用架构,且各有优势。该文旨在研究结合两种架构且复杂度低、识别精度高的人体行为识别模型。具体地,该文提出基于通道剪枝的双流-非局部时空残差卷积神经网络(TPNLST-ResCNN),该网络采用双流架构,分别在时间流子网络和空间流子网络采用时空残差卷积神经网络(ST-ResCNN),并采用均值融合算法融合两个子网络的识别结果。进一步地,为了降低网络的复杂度,该文提出了针对时空残差卷积神经网络的通道剪枝方案,在实现模型压缩的同时,可基本保持模型的识别精度;为了使得压缩后网络能更好地学习到输入视频中人体行为变化的长距离时空依赖关系,提高网络的识别精度,该文提出在剪枝后网络的首个残差型时空卷积块前引入一个非局部模块。实验结果表明,该文提出的人体行为识别模型在公共数据集UCF101和HMDB51上的识别准确率分别为98.33%和74.63%。与现有方法相比,该文模型具有参数量小、识别精度高的优点。 展开更多
关键词 人体行为识别 双流卷积神经网络 3维卷积神经网络 网络剪枝 非局部模块
在线阅读 下载PDF
一种双流卷积神经网络的黑烟车检测算法 被引量:6
2
作者 吴丙芳 叶兵 汪仕铭 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第2期198-202,共5页
针对目前人工监测机动车黑烟行为费时费力的问题,文章提出一种双流卷积神经网络的机动车黑烟检测方法。该方法首先使用Vibe背景模型提取运动前景目标,然后对前景图像使用霍夫直线检测,获取候选黑烟区域,减少了路面环境和机动车车身对黑... 针对目前人工监测机动车黑烟行为费时费力的问题,文章提出一种双流卷积神经网络的机动车黑烟检测方法。该方法首先使用Vibe背景模型提取运动前景目标,然后对前景图像使用霍夫直线检测,获取候选黑烟区域,减少了路面环境和机动车车身对黑烟检测的影响。双流卷积神经网络分为空间流卷积神经网络和时间流卷积神经网络,空间流提取黑烟图像的空间域特征,时间流通过光流图片获取黑烟图像的动态信息,将2个网络的输出结果融合得到最后分类结果。实验结果表明,该文提出的黑烟检测模型的识别率高达93.7%,为行驶中的机动车黑烟监控提供了一种有效方案。 展开更多
关键词 黑烟检测 直线检测 空间信息 动态信息 双流卷积神经网络
在线阅读 下载PDF
基于双流卷积与双中心loss的行为识别研究 被引量:3
3
作者 毛志强 马翠红 +1 位作者 崔金龙 王毅 《微电子学与计算机》 北大核心 2019年第3期96-100,共5页
针对行为视频中相似动作类内差异大、类间差异小,识别准确率不高的问题,提出了一种基于双流卷积网络与双中心loss的行为识别方法.该方法首先构建双流卷积网络结构,以C3Dnet模型作为双流结构的基础模型,分别提取多尺度RGB视频帧中的表观... 针对行为视频中相似动作类内差异大、类间差异小,识别准确率不高的问题,提出了一种基于双流卷积网络与双中心loss的行为识别方法.该方法首先构建双流卷积网络结构,以C3Dnet模型作为双流结构的基础模型,分别提取多尺度RGB视频帧中的表观短时运动信息和堆叠光流图中的长时运动信息;然后将双流结构提取的深度信息经长短时记忆(LSTM)网络解析后进行特征融合;最后,利用基于双中心loss的2C-softmax目标函数,来最大化类间距离和最小化类内距离,从而实现相似动作的分类与识别.在数据集KTH上的实验结果表明,该方法能够准确识别相似动作,识别准确率可达98.2%,具有很好的识别效果. 展开更多
关键词 双流卷积网络 中心loss 长短时记(LSTM) 光流图
在线阅读 下载PDF
融合双流三维卷积和注意力机制的动态手势识别 被引量:26
4
作者 王粉花 张强 +1 位作者 黄超 张苒 《电子与信息学报》 EI CSCD 北大核心 2021年第5期1389-1396,共8页
得益于计算机硬件以及计算能力的进步,自然、简单的动态手势识别在人机交互方面备受关注。针对人机交互中对动态手势识别准确率的要求,该文提出一种融合双流3维卷积神经网络(I3D)和注意力机制(CBAM)的动态手势识别方法CBAM-I3D。并且改... 得益于计算机硬件以及计算能力的进步,自然、简单的动态手势识别在人机交互方面备受关注。针对人机交互中对动态手势识别准确率的要求,该文提出一种融合双流3维卷积神经网络(I3D)和注意力机制(CBAM)的动态手势识别方法CBAM-I3D。并且改进了I3D网络模型的相关参数和结构,为了提高模型的收敛速度和稳定性,使用了批量归一化(BN)技术优化网络,使优化后网络的训练时间缩短。同时与多种双流3D卷积方法在开源中国手语数据集(CSL)上进行了实验对比,实验结果表明,该文所提方法能很好地识别动态手势,识别率达到了90.76%,高于其他动态手势识别方法,验证了所提方法的有效性和可行性。 展开更多
关键词 动态手势识别 深度学习 双流3维卷积神经网络 注意力机制 BN层
在线阅读 下载PDF
基于改进双流法的井下配电室巡检行为识别 被引量:9
5
作者 党伟超 张泽杰 +2 位作者 白尚旺 龚大力 吴喆峰 《工矿自动化》 北大核心 2020年第4期75-80,共6页
井下配电室监控视频持续时间较长且行为类型复杂,传统双流卷积神经网络(CNN)法对此类行为识别效果较差.针对该问题,对双流CNN法进行改进,提出了一种基于改进双流法的井下配电室巡检行为识别方法.通过场景分析,将巡检行为分为站立检测、... 井下配电室监控视频持续时间较长且行为类型复杂,传统双流卷积神经网络(CNN)法对此类行为识别效果较差.针对该问题,对双流CNN法进行改进,提出了一种基于改进双流法的井下配电室巡检行为识别方法.通过场景分析,将巡检行为分为站立检测、下蹲检测、走动、站立记录、坐下记录5种类型,并制作了巡检行为数据集IBDS5.将每个巡检行为视频等分为3个部分,分别对应巡检开始、巡检中和巡检结束;对3个部分视频分别随机采样,获取代表空间特征的RGB图像和代表运动特征的连续光流图像,并分别输入空间流网络和时间流网络进行特征提取;对2个网络的预测特征进行加权融合,获取巡检行为识别结果.实验结果表明,以Res Net152网络结构为基础,且权重比例为1∶2的空间流和时间流双流融合网络具有较高的识别准确度,Top-1准确度达到98.92%;本文方法在IBDS5数据集和公共数据集UCF101上的识别准确率均优于3D-CNN、传统双流CNN等现有方法. 展开更多
关键词 井下配电室 巡检行为识别 双流卷积神经网络 视频分段 特征融合
在线阅读 下载PDF
基于双流CNN与Bi-LSTM的施工人员不安全行为轻量级识别模型 被引量:9
6
作者 马莉 王卓 +1 位作者 代新冠 贾荣豪 《西安科技大学学报》 CAS 北大核心 2022年第4期809-817,共9页
由于PC端的施工人员不安全行为识别模型计算复杂度高、模型体积大,不适合在边缘设备上运行,提出了一种基于双流CNN与Bi-LSTM的轻量级识别模型。模型主要包含双流CNN特征提取、特征融合和行为分类3个模块,在双流CNN特征提取模块中使用高... 由于PC端的施工人员不安全行为识别模型计算复杂度高、模型体积大,不适合在边缘设备上运行,提出了一种基于双流CNN与Bi-LSTM的轻量级识别模型。模型主要包含双流CNN特征提取、特征融合和行为分类3个模块,在双流CNN特征提取模块中使用高效的轻量化网络ShuffleNetV2代替传统CNN以提升计算效率,同时添加卷积注意力模块获取关键特征以提高行为识别准确率;在特征融合模块中引入Bi-LSTM网络获取视频前后的关联信息,实现双流特征融合;在行为分类模块中利用注意力机制实现自适应分配权重,从而进一步提升施工人员不安全行为识别的准确率。最后,采用UCF-101数据集和自建数据集进行模型训练和验证,该模型的累加乘积操作次数为7.73 G,参数量为5.38 M,均优于传统的双流CNN方法;此外,模型在2个数据集上的识别准确率分别为94.3%和94.8%,均优于双流CNN-MobileNetV3等其他轻量级模型。实验结果表明所提模型相对于传统双流CNN具有更低的计算复杂度、更小的模型参数量以及更高的识别准确率,适合在资源受限的边缘设备上部署与运行。 展开更多
关键词 不安全行为 行为识别 轻量化 双流卷积神经网络 双向长短时记忆网络 注意力机制
在线阅读 下载PDF
基于FlowNet2.0改进的运动人体识别研究
7
作者 沈英杰 付江龙 +2 位作者 王剑雄 魏士磊 任一帅 《现代信息科技》 2024年第21期78-82,共5页
针对现有双流卷积神经网络由于运动中人体移动速度快,无法快速、准确地识别人体信息的问题,提出了一种基于FlowNet2.0网络改进的人体识别检测方法,通过给FlowNet2.0网络的各视频帧输入通道引入自注意力,能够有效增强网络对外观信息和姿... 针对现有双流卷积神经网络由于运动中人体移动速度快,无法快速、准确地识别人体信息的问题,提出了一种基于FlowNet2.0网络改进的人体识别检测方法,通过给FlowNet2.0网络的各视频帧输入通道引入自注意力,能够有效增强网络对外观信息和姿态特征的提取能力,从而更好地描述运动目标。最终该模型在HDBM51数据集上进行训练,实验结果表明,改进后的FlowNet2.0网络取得了显著的改进效果。此研究为解决动作时的人体识别问题提供了一种有效的解决方案。 展开更多
关键词 双流卷积神经网络 视频理解 运动目标 多注意力网络
在线阅读 下载PDF
基于运动学动态图的人体动作识别方法 被引量:3
8
作者 肖志涛 张曌 王雯 《天津工业大学学报》 CAS 北大核心 2021年第1期53-59,共7页
为了识别RGB-D视频中的人体动作,针对视频中运动信息利用不充分的问题,提出了一种基于运动学动态图的人体动作识别方法。首先利用RGB视频序列和对应的深度图序列生成场景流特征图,基于场景流特征图计算运动学特征图序列,其中包含丰富的... 为了识别RGB-D视频中的人体动作,针对视频中运动信息利用不充分的问题,提出了一种基于运动学动态图的人体动作识别方法。首先利用RGB视频序列和对应的深度图序列生成场景流特征图,基于场景流特征图计算运动学特征图序列,其中包含丰富的运动信息;使用分层排序池化将运动学特征图序列编码为运动学动态图,同时将RGB视频序列编码为外观动态图,最后将运动学动态图和外观动态图输入到双流卷积网络进行人体动作识别。结果表明:基于运动学动态图和双流卷积网络的人体动作识别方法融合了外观信息和运动信息,不仅充分表征了视频的动态,而且使用了视频中具有丰富运动信息的运动学特征;在公开的数据集上对本方法进行验证,在M2I数据集和SBU Kinect Interaction数据集的动作识别率分别为91.8%和95.2%。 展开更多
关键词 人体动作识别 运动学特征 动态图 双流卷积网络
在线阅读 下载PDF
基于低分辨率红外传感器的深度学习动作识别方法 被引量:3
9
作者 张昱彤 翟旭平 聂宏 《红外技术》 CSCD 北大核心 2022年第3期286-293,共8页
近年来动作识别成为计算机视觉领域的研究热点,不同于针对视频图像进行的研究,本文针对低分辨率红外传感器采集到的温度数据,提出了一种基于此类红外传感器的双流卷积神经网络动作识别方法。空间和时间数据分别以原始温度值的形式同时... 近年来动作识别成为计算机视觉领域的研究热点,不同于针对视频图像进行的研究,本文针对低分辨率红外传感器采集到的温度数据,提出了一种基于此类红外传感器的双流卷积神经网络动作识别方法。空间和时间数据分别以原始温度值的形式同时输入改进的双流卷积神经网络中,最终将空间流网络和时间流网络的概率矢量进行加权融合,得到最终的动作类别。实验结果表明,在手动采集的数据集上,平均识别准确率可达到98.2%,其中弯腰、摔倒和行走动作的识别准确率均达99%,可以有效地对其进行识别。 展开更多
关键词 动作识别 双流卷积神经网络 低分辨率红外传感器 深度学习
在线阅读 下载PDF
基于融合逆透射率图的水下图像增强算法
10
作者 张剑钊 郭继昌 汪昱东 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第5期921-929,共9页
针对水下图像质量退化严重的问题,提出一种端到端的基于融合逆透射率图的水下图像增强算法.将原始RGB图像和基于传统方法得到的逆透射率图分别输入到双流卷积神经网络的2个编码器中;通过跨模态特征融合模块使得2种图像信息充分融合互补... 针对水下图像质量退化严重的问题,提出一种端到端的基于融合逆透射率图的水下图像增强算法.将原始RGB图像和基于传统方法得到的逆透射率图分别输入到双流卷积神经网络的2个编码器中;通过跨模态特征融合模块使得2种图像信息充分融合互补,让网络更好地学习到水下光学成像的特点;通过特征增强模块,增强特征的表达能力;通过残差解码模块连接解码器和编码器,以补充和丰富RGB特征.通过逆透射率图的水下图像增强算法以及跨模态跨尺度的信息融合,由粗到细地进行逐级处理,最终输出增强后的RGB图像.实验结果表明,所提算法能够有效地提升水下图像视觉质量.综合主观评价和客观评价,所提算法优于所对比的白平衡WB、直方图均衡化HE、Water-Net、UGAN、UWCNN、Ucolor 6种算法. 展开更多
关键词 逆透射率图 水下图像增强 水下光学成像 双流卷积神经网络 特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部