期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于3D双流卷积神经网络和GRU网络的人体行为识别 被引量:7
1
作者 陈颖 来兴雪 +2 位作者 周志全 秦晓宏 池亚平 《计算机应用与软件》 北大核心 2020年第5期164-168,218,共6页
针对基于双流卷积神经网络的人体行为识别准确率不高,不能充分利用时间维度的信息问题,提出一种基于3D双流卷积和门控循环单元(GRU)网络的人体行为识别模型。将3D卷积神经网络引入到双流卷积神经网络中,在双流卷积神经网络的空间流和时... 针对基于双流卷积神经网络的人体行为识别准确率不高,不能充分利用时间维度的信息问题,提出一种基于3D双流卷积和门控循环单元(GRU)网络的人体行为识别模型。将3D卷积神经网络引入到双流卷积神经网络中,在双流卷积神经网络的空间流和时间流中分别使用3D卷积神经网络提取视频的时空信息;融合3D双流卷积神经网络提取到的时空特征,形成有时间顺序的时空特征流;将时空特征流输入到具有记忆信息能力的GRU网络中递归学习时间维度的长时序列特征并利用线性SVM分类器进行人体行为识别。在行为识别数据集UCF101上的实验结果表明,该模型充分地利用了视频的时间维度信息,识别率为92.2%,优于其他人体行为识别算法。 展开更多
关键词 人体行为识别 3D卷积神经网络 双流卷积神经网络 门控循环单元
在线阅读 下载PDF
一种基于双流卷积神经网络跌倒识别方法 被引量:13
2
作者 袁智 胡辉 《河南师范大学学报(自然科学版)》 CAS 北大核心 2017年第3期96-101,共6页
针对跌倒行为的视觉特征难以提取的问题,提出一种由两路卷积神经网络和模型融合部分组成的双流卷积神经网络(Two-Stream CNN)的跌倒识别方法.该方法的一路对视频帧的运动人加框标记后,送三维卷积神经网络(3D-CNN)处理来消除视频背景的干... 针对跌倒行为的视觉特征难以提取的问题,提出一种由两路卷积神经网络和模型融合部分组成的双流卷积神经网络(Two-Stream CNN)的跌倒识别方法.该方法的一路对视频帧的运动人加框标记后,送三维卷积神经网络(3D-CNN)处理来消除视频背景的干扰;另一路从相邻视频帧获取光流图后,送VGGNet-16卷积神经网络处理;最后将3D-CNN和VGGNet-16的Softmax输出识别概率加权融合作为Two-Stream CNN输出结果.实验结果表明:标记运动人并经3D-CNN处理有效地消除了视频背景的干扰;Two-Stream CNN跌倒识别率为96%,比3D-CNN提高了4%,比VGGNet-16网络提高了3%. 展开更多
关键词 跌倒识别 双流卷积神经网络 视频帧 光流图
在线阅读 下载PDF
基于双流卷积神经网络的人体动作识别研究 被引量:5
3
作者 吕淑平 黄毅 王莹莹 《实验技术与管理》 CAS 北大核心 2021年第8期144-148,共5页
针对双流卷积神经网络存在的网络结构较浅、时间流及空间流网络均为独立训练学习、并未学习到时空网络之间关联信息等问题,文章设计了基于双流卷积神经网络的人体动作识别改进算法。采用ResNet-34对原网络进行替换,加深网络结构;将时间... 针对双流卷积神经网络存在的网络结构较浅、时间流及空间流网络均为独立训练学习、并未学习到时空网络之间关联信息等问题,文章设计了基于双流卷积神经网络的人体动作识别改进算法。采用ResNet-34对原网络进行替换,加深网络结构;将时间流、空间流网络提前进行特征图融合,加强时空网络信息融合的充分性。文章还对具体的融合方式和融合位置进行了实验研究,确定了网络最佳融合策略,在UCF-101数据集上的识别率为91.5%,相较于原网络以及其他相关识别方法有更高的识别精度。 展开更多
关键词 动作识别 深度学习 双流卷积神经网络
在线阅读 下载PDF
一种双流卷积神经网络的黑烟车检测算法 被引量:7
4
作者 吴丙芳 叶兵 汪仕铭 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第2期198-202,共5页
针对目前人工监测机动车黑烟行为费时费力的问题,文章提出一种双流卷积神经网络的机动车黑烟检测方法。该方法首先使用Vibe背景模型提取运动前景目标,然后对前景图像使用霍夫直线检测,获取候选黑烟区域,减少了路面环境和机动车车身对黑... 针对目前人工监测机动车黑烟行为费时费力的问题,文章提出一种双流卷积神经网络的机动车黑烟检测方法。该方法首先使用Vibe背景模型提取运动前景目标,然后对前景图像使用霍夫直线检测,获取候选黑烟区域,减少了路面环境和机动车车身对黑烟检测的影响。双流卷积神经网络分为空间流卷积神经网络和时间流卷积神经网络,空间流提取黑烟图像的空间域特征,时间流通过光流图片获取黑烟图像的动态信息,将2个网络的输出结果融合得到最后分类结果。实验结果表明,该文提出的黑烟检测模型的识别率高达93.7%,为行驶中的机动车黑烟监控提供了一种有效方案。 展开更多
关键词 黑烟检测 直线检测 空间信息 动态信息 双流卷积神经网络
在线阅读 下载PDF
基于双谱与双流卷积神经网络的断路器故障诊断 被引量:2
5
作者 林穿 徐启峰 《电子测量技术》 北大核心 2021年第23期165-172,共8页
高压断路器操动机构的振动信号包含了断路器运行状态的重要信息,对操动机构工作状态的诊断辨识十分重要。针对振动信号随机、非平稳的复杂特性,提出了一种基于双谱分析和双通道流浅层卷积神经网络的断路器故障诊断方法。对振动信号进行... 高压断路器操动机构的振动信号包含了断路器运行状态的重要信息,对操动机构工作状态的诊断辨识十分重要。针对振动信号随机、非平稳的复杂特性,提出了一种基于双谱分析和双通道流浅层卷积神经网络的断路器故障诊断方法。对振动信号进行双谱分析和小波分析,分别提取2D双谱矩阵以及1D小波频带能量作为双流卷积神经网络的双通道特征;对断路器模拟实验采集到的5种工况下的振动信号进行有监督训练。结果表明,双谱分析能够抑制高斯噪声、保留操动机构不同工况下主要峰值形态特征并融合小波频带能量特征,所提模型训练迭代5次即可达到98.33%的高识别精度,实现断路器操动机构的故障诊断辨识。 展开更多
关键词 振动信号 双谱分析 双流卷积神经网络 故障诊断 断路器
在线阅读 下载PDF
基于双流卷积神经网络的肌电信号手势识别方法 被引量:12
6
作者 卫文韬 李亚军 《计算机集成制造系统》 EI CSCD 北大核心 2022年第1期124-131,共8页
面向高性能的肌电控制系统,提出一种基于双流卷积神经网络的肌电信号手势识别方法,其从原始表面肌电信号中提取离散小波变换系数,与原始表面肌电信号分别作为双流卷积神经网络两个分支的输入进行高层特征学习,最终通过一个高层特征融合... 面向高性能的肌电控制系统,提出一种基于双流卷积神经网络的肌电信号手势识别方法,其从原始表面肌电信号中提取离散小波变换系数,与原始表面肌电信号分别作为双流卷积神经网络两个分支的输入进行高层特征学习,最终通过一个高层特征融合模块对两个分支学习得到的高层特征进行融合。所提方法在3个包含50~52类手势动作表面肌电信号的大规模基准数据集中,识别所有手势动作的投票准确率分别达到97.9%,81.3%,82.4%,且在3个数据集中基于不同长度滑动采样窗口的手势识别准确率均显著超越了近年来本领域相关研究工作所提出的深度神经网络模型。 展开更多
关键词 手势识别 双流卷积神经网络 离散小波变换 表面肌电信号 肌电控制系统
在线阅读 下载PDF
基于双流-非局部时空残差卷积神经网络的人体行为识别 被引量:4
7
作者 钱惠敏 陈实 皇甫晓瑛 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期1100-1108,共9页
3维卷积神经网络(3D CNN)与双流卷积神经网络(two-stream CNN)是视频中人体行为识别研究的常用架构,且各有优势。该文旨在研究结合两种架构且复杂度低、识别精度高的人体行为识别模型。具体地,该文提出基于通道剪枝的双流-非局部时空残... 3维卷积神经网络(3D CNN)与双流卷积神经网络(two-stream CNN)是视频中人体行为识别研究的常用架构,且各有优势。该文旨在研究结合两种架构且复杂度低、识别精度高的人体行为识别模型。具体地,该文提出基于通道剪枝的双流-非局部时空残差卷积神经网络(TPNLST-ResCNN),该网络采用双流架构,分别在时间流子网络和空间流子网络采用时空残差卷积神经网络(ST-ResCNN),并采用均值融合算法融合两个子网络的识别结果。进一步地,为了降低网络的复杂度,该文提出了针对时空残差卷积神经网络的通道剪枝方案,在实现模型压缩的同时,可基本保持模型的识别精度;为了使得压缩后网络能更好地学习到输入视频中人体行为变化的长距离时空依赖关系,提高网络的识别精度,该文提出在剪枝后网络的首个残差型时空卷积块前引入一个非局部模块。实验结果表明,该文提出的人体行为识别模型在公共数据集UCF101和HMDB51上的识别准确率分别为98.33%和74.63%。与现有方法相比,该文模型具有参数量小、识别精度高的优点。 展开更多
关键词 人体行为识别 双流卷积神经网络 3维卷积神经网络 网络剪枝 非局部模块
在线阅读 下载PDF
用于微表情识别的改进双流浅层卷积神经网络
8
作者 李昆仑 陈栋 +1 位作者 王珺 王怡辉 《小型微型计算机系统》 CSCD 北大核心 2021年第6期1219-1226,共8页
在微表情自动识别任务中,浅层卷积神经网络和深层网络相比更好地改善了网络训练过拟合的情况,但是多数浅层卷积神经网络存在输入特征单一和提取高维有效特征能力不足的问题.针对上述问题本文同时使用图像的灰度特征和运动特征表征原图像... 在微表情自动识别任务中,浅层卷积神经网络和深层网络相比更好地改善了网络训练过拟合的情况,但是多数浅层卷积神经网络存在输入特征单一和提取高维有效特征能力不足的问题.针对上述问题本文同时使用图像的灰度特征和运动特征表征原图像,并且提出了一种改进双流浅层卷积神经网络(Enhanced Dual-stream Shallow Convolutional Neural Network,EDSSNet)用于微表情的识别.本文首先使用欧拉视频放大算法和TV-L1光流法对视频关键帧处理,提取图像的灰度特征和运动特征,然后用空洞卷积和注意力模块改进双流浅层卷积网络模型,提高网络提取有效特征的能力,最后将两种特征输入网络训练后进行分类.理论分析及在CASMEⅡ、SMIC-HS和SAMM微表情数据库上的实验结果均表明了改进模型的有效性. 展开更多
关键词 微表情识别 双流卷积神经网络 欧拉视频放大算法 TV-L1光流法 空洞卷积 注意力机制
在线阅读 下载PDF
基于双流残差卷积神经网络的养殖鳗鲡(Anguilla)摄食强度评估研究 被引量:1
9
作者 李凯 江兴龙 +1 位作者 许志扬 林茜 《海洋与湖沼》 CAS CSCD 北大核心 2023年第4期1207-1216,共10页
为实现对养殖鳗鲡(Anguilla)摄食强度的准确评估,提出了一种基于双流残差卷积神经网络的鳗鲡摄食强度评估方法,该方法针对传统双流网络(Two-stream)中存在的问题做出了相应的改进。首先针对传统双流网络存在网络结构较浅,无法提取到充... 为实现对养殖鳗鲡(Anguilla)摄食强度的准确评估,提出了一种基于双流残差卷积神经网络的鳗鲡摄食强度评估方法,该方法针对传统双流网络(Two-stream)中存在的问题做出了相应的改进。首先针对传统双流网络存在网络结构较浅,无法提取到充分的鳗鲡摄食行为特征的问题,选择使用ResNet50网络进行替换,以提取到更具代表性的特征。其次针对传统双流网络最后的分类结果是把空间流和时间流的得分取平均值融合而获得,这种方式较为简单,且其空间流和时间流网络为独立进行训练,容易导致网络出现学习不到鳗鲡摄食行为的时空关联特征的问题,选择使用特征层融合方式对空间流和时间流网络提取获得的特征进行融合,让网络能够并行进行训练,以提取到时空信息间的关联特征。试验结果表明:文内提出的基于双流残差卷积神经网络的鳗鲡摄食强度评估方法准确率达到98.6%,与单通道的空间流和时间流网络相比,准确率分别提升了5.8%和8.5%,与传统的双流网络相比准确率也提升了3.2%。 展开更多
关键词 鳗鲡 摄食强度 双流残差卷积神经网络 ResNet50 并行训练 特征层融合
在线阅读 下载PDF
基于时空融合卷积神经网络的异常行为识别 被引量:8
10
作者 王泽伟 高丙朋 《计算机工程与设计》 北大核心 2020年第7期2052-2056,共5页
为解决基于RGB图像的异常行为识别无法有效利用帧间运动信息的问题,采用深度学习思想,提出一种基于时空融合方法的双流卷积神经网络对异常行为进行识别。使用VGGNet16构建双流模型,以RGB图片和连续光流帧作为网络的输入,有效利用视频流... 为解决基于RGB图像的异常行为识别无法有效利用帧间运动信息的问题,采用深度学习思想,提出一种基于时空融合方法的双流卷积神经网络对异常行为进行识别。使用VGGNet16构建双流模型,以RGB图片和连续光流帧作为网络的输入,有效利用视频流信息。使用UCF101数据集预训练网络模型,将模型迁移学习到CASIA数据集上并微调网络。实验结果表明,与Multi-resolution CNN方法和Two-stream CNN (AlexNet)方法相比,该方法具有更高的准确率。 展开更多
关键词 时空融合 双流卷积神经网络 异常行为识别 迁移学习 模型微调
在线阅读 下载PDF
基于scSE非局部双流ResNet网络的行为识别 被引量:2
11
作者 李占利 王佳莹 +1 位作者 靳红梅 李洪安 《计算机应用与软件》 北大核心 2024年第8期319-325,共7页
针对双流网络对包含冗余信息的视频帧存在识别率低的问题,在双流网络的基础上引入scSE(Spatial and Channel Squeeze&Excitation Block)和非局部操作,构建SC_NLResNet行为识别框架。该框架将视频划分为等分不重叠的时序段并在每段... 针对双流网络对包含冗余信息的视频帧存在识别率低的问题,在双流网络的基础上引入scSE(Spatial and Channel Squeeze&Excitation Block)和非局部操作,构建SC_NLResNet行为识别框架。该框架将视频划分为等分不重叠的时序段并在每段上稀疏采样,提取RGB帧以及光流图作为scSE模块的输入;将经过scSE处理的特征输入非局部双流ResNet网络中,融合各分段得到最终的预测结果。在UCF101以及Hmdb51数据集上实验准确率分别达到96.9%和76.2%,结果表明,非局部操作与scSE模块结合可以增强特征时空上以及通道间的信息提高准确率,验证了SC_NLResNet网络的有效性。 展开更多
关键词 双流卷积神经网络 scSE模块 残差网络 非局部操作 行为识别
在线阅读 下载PDF
基于改进双流卷积网络的火灾图像特征提取方法 被引量:7
12
作者 徐登 黄晓东 《计算机科学》 CSCD 北大核心 2019年第11期291-296,共6页
基于图像处理技术的火灾监测,是近年来火灾监控领域的重要分支。对于开阔场景的火灾监测,利用火灾发生时产生的烟雾和火焰的动、静特性,以双流(Two-Stream)卷积神经网络作为理论基础对火灾进行检测识别。双流卷积神经网络采用空间流与... 基于图像处理技术的火灾监测,是近年来火灾监控领域的重要分支。对于开阔场景的火灾监测,利用火灾发生时产生的烟雾和火焰的动、静特性,以双流(Two-Stream)卷积神经网络作为理论基础对火灾进行检测识别。双流卷积神经网络采用空间流与时序流分别提取视频中的空间信息与时序信息,然而火灾初期的信息较为微弱,特征不够明显。为进一步提高初期的识别率,提出一种空间增强网络作为双流卷积神经网络的空间流来提取并增强视频的空间信息。空间增强网络同时对当前帧图片V t和上一帧图片V t-1做卷积,用V t的卷积特征与V t-1的卷积特征做减法,保留卷积特征差异性,再将卷积特征差与当前帧V t的卷积特征相加,从而增强对V t的空间特征卷积;双流卷积网络的时间卷积流对当前帧的光流图片V t′进行时序特征卷积;最后将增强后的空间特征与时序特征融合进行分类。实验结果表明,改进后的双流卷积网络的识别率比原始的双流卷积网络提高了6.2%,且在公开数据集上的测试准确率达到了92.15%,从而证明了该方法的有效性和优越性。此外,与其他方法相比,该网络具有低深度、高识别率的特征,不仅能提高火灾和烟雾的识别率,而且实现了火灾的早期发现,缩短了检测时间。 展开更多
关键词 开阔空间火灾监测 空间特征增强网络 双流卷积神经网络 时空特征融合 光流法
在线阅读 下载PDF
特征图组合的双流CNN手指关节角度连续运动预测方法研究
13
作者 武岩 曹崇莉 +2 位作者 李奇 姬鹏辉 张航 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第11期119-128,共10页
针对基于表面肌电(surface electromyography,sEMG)信号手指关节角度连续运动预测时序信息提取不足、预测准确率较低的问题,提出了一种基于特征图组合(feature map combinations,FMC)的双流卷积神经网络(dual-stream convolutional neur... 针对基于表面肌电(surface electromyography,sEMG)信号手指关节角度连续运动预测时序信息提取不足、预测准确率较低的问题,提出了一种基于特征图组合(feature map combinations,FMC)的双流卷积神经网络(dual-stream convolutional neural network,DCNN)预测方法。提取sEMG信号的特征信息,采用滑动窗方式将特征信息进行特征图组合,表达特征的时间连贯性以提取sEMG信号的时序信息,通过DCNN网络在时间、空间维度对组合后的特征图提取深层特征,提高手指关节角度连续运动预测效果。在NinaPro-DB8数据集上进行实验,结果表明:在3类不同自由度(18个、5个、3个)的相关方法比较中,健康受试者的R2值分别提高了7.9%、16.8%和17.8%;截肢受试者的R2值分别提高了9.6%、14.3%和10.3%。 展开更多
关键词 SEMG 连续运动预测 特征图组合 双流卷积神经网络
在线阅读 下载PDF
基于双流非局部残差网络的行为识别方法 被引量:7
14
作者 周云 陈淑荣 《计算机应用》 CSCD 北大核心 2020年第8期2236-2240,共5页
针对传统卷积神经网络(CNN)对人体行为动作仅能提取局部特征易导致相似行为动作识别准确率不高的问题,提出了一种基于双流非局部残差网络(NL-ResNet)的行为识别方法。首先提取视频的RGB帧和密集光流图,分别作为空间流和时间流网络的输入... 针对传统卷积神经网络(CNN)对人体行为动作仅能提取局部特征易导致相似行为动作识别准确率不高的问题,提出了一种基于双流非局部残差网络(NL-ResNet)的行为识别方法。首先提取视频的RGB帧和密集光流图,分别作为空间流和时间流网络的输入,并通过角落裁剪和多尺度相结合的预处理方法进行数据增强;其次分别利用残差网络的残差块提取视频的局部表观特征和运动特征,再通过在残差块之后接入的非局部CNN模块提取视频的全局信息,实现网络局部特征和全局特征的交叉提取;最后将两个分支网络分别通过A-softmax损失函数进行更精细的分类,并输出加权融合后的识别结果。该方法能充分利用局部和全局特征提高模型的表征能力。在UCF101数据集上,NL-ResNet取得了93.5%的识别精度,与原始双流网络相比提高了5.5个百分点。实验结果表明,所提模型能更好地提取行为特征,有效提高行为识别的准确率。 展开更多
关键词 行为识别 双流卷积神经网络 非局部 特征提取 A-softmax
在线阅读 下载PDF
融合双流三维卷积和注意力机制的动态手势识别 被引量:26
15
作者 王粉花 张强 +1 位作者 黄超 张苒 《电子与信息学报》 EI CSCD 北大核心 2021年第5期1389-1396,共8页
得益于计算机硬件以及计算能力的进步,自然、简单的动态手势识别在人机交互方面备受关注。针对人机交互中对动态手势识别准确率的要求,该文提出一种融合双流3维卷积神经网络(I3D)和注意力机制(CBAM)的动态手势识别方法CBAM-I3D。并且改... 得益于计算机硬件以及计算能力的进步,自然、简单的动态手势识别在人机交互方面备受关注。针对人机交互中对动态手势识别准确率的要求,该文提出一种融合双流3维卷积神经网络(I3D)和注意力机制(CBAM)的动态手势识别方法CBAM-I3D。并且改进了I3D网络模型的相关参数和结构,为了提高模型的收敛速度和稳定性,使用了批量归一化(BN)技术优化网络,使优化后网络的训练时间缩短。同时与多种双流3D卷积方法在开源中国手语数据集(CSL)上进行了实验对比,实验结果表明,该文所提方法能很好地识别动态手势,识别率达到了90.76%,高于其他动态手势识别方法,验证了所提方法的有效性和可行性。 展开更多
关键词 动态手势识别 深度学习 双流3维卷积神经网络 注意力机制 BN层
在线阅读 下载PDF
基于双路时空网络的驾驶员行为识别 被引量:1
16
作者 席治远 唐超 +1 位作者 童安炀 王文剑 《计算机应用》 CSCD 北大核心 2024年第5期1511-1519,共9页
驾驶员危险驾驶行为是恶性交通事故发生的主要原因之一,因此识别驾驶员行为具有工程应用上的重要意义。目前,主流基于视觉的检测方法是对驾驶员行为的局部时空特征进行研究,针对全局空间特征及长时序相关性特征研究较少,这在一定程度上... 驾驶员危险驾驶行为是恶性交通事故发生的主要原因之一,因此识别驾驶员行为具有工程应用上的重要意义。目前,主流基于视觉的检测方法是对驾驶员行为的局部时空特征进行研究,针对全局空间特征及长时序相关性特征研究较少,这在一定程度上无法结合场景上下文信息对危险驾驶行为进行识别。为了解决上述问题,提出一种基于双路时空网络的驾驶员行为识别方法,整合不同时空通路的优点以提高行为特征丰富度。首先,使用一种改进的双流卷积神经网络(TSN)对时空信息进行表征学习,同时降低提取特征的稀疏性;其次,构建一种基于Transformer的串行时空网络补充长时序相关性信息;最后,联合双路时空网络进行融合决策,增强模型的鲁棒性。实验结果表明,所提方法在驾驶员疲劳检测数据集YawDD、驾驶员分心检测数据集SF-DDDD和最新驾驶员行为识别数据集SynDD1这3个公开数据集上分别取得99.85%、99.94%和98.77%的识别准确率,特别是在SynDD1上,与使用动作识别的网络MoviNet-A0相比识别准确率提升了1.64个百分点;消融实验结果也验证了该方法对驾驶员行为有较高的识别精度。 展开更多
关键词 驾驶员行为识别 双路时空网络 双流卷积神经网络 TRANSFORMER
在线阅读 下载PDF
基于改进双流法的井下配电室巡检行为识别 被引量:10
17
作者 党伟超 张泽杰 +2 位作者 白尚旺 龚大力 吴喆峰 《工矿自动化》 北大核心 2020年第4期75-80,共6页
井下配电室监控视频持续时间较长且行为类型复杂,传统双流卷积神经网络(CNN)法对此类行为识别效果较差.针对该问题,对双流CNN法进行改进,提出了一种基于改进双流法的井下配电室巡检行为识别方法.通过场景分析,将巡检行为分为站立检测、... 井下配电室监控视频持续时间较长且行为类型复杂,传统双流卷积神经网络(CNN)法对此类行为识别效果较差.针对该问题,对双流CNN法进行改进,提出了一种基于改进双流法的井下配电室巡检行为识别方法.通过场景分析,将巡检行为分为站立检测、下蹲检测、走动、站立记录、坐下记录5种类型,并制作了巡检行为数据集IBDS5.将每个巡检行为视频等分为3个部分,分别对应巡检开始、巡检中和巡检结束;对3个部分视频分别随机采样,获取代表空间特征的RGB图像和代表运动特征的连续光流图像,并分别输入空间流网络和时间流网络进行特征提取;对2个网络的预测特征进行加权融合,获取巡检行为识别结果.实验结果表明,以Res Net152网络结构为基础,且权重比例为1∶2的空间流和时间流双流融合网络具有较高的识别准确度,Top-1准确度达到98.92%;本文方法在IBDS5数据集和公共数据集UCF101上的识别准确率均优于3D-CNN、传统双流CNN等现有方法. 展开更多
关键词 井下配电室 巡检行为识别 双流卷积神经网络 视频分段 特征融合
在线阅读 下载PDF
基于双流CNN与Bi-LSTM的施工人员不安全行为轻量级识别模型 被引量:9
18
作者 马莉 王卓 +1 位作者 代新冠 贾荣豪 《西安科技大学学报》 CAS 北大核心 2022年第4期809-817,共9页
由于PC端的施工人员不安全行为识别模型计算复杂度高、模型体积大,不适合在边缘设备上运行,提出了一种基于双流CNN与Bi-LSTM的轻量级识别模型。模型主要包含双流CNN特征提取、特征融合和行为分类3个模块,在双流CNN特征提取模块中使用高... 由于PC端的施工人员不安全行为识别模型计算复杂度高、模型体积大,不适合在边缘设备上运行,提出了一种基于双流CNN与Bi-LSTM的轻量级识别模型。模型主要包含双流CNN特征提取、特征融合和行为分类3个模块,在双流CNN特征提取模块中使用高效的轻量化网络ShuffleNetV2代替传统CNN以提升计算效率,同时添加卷积注意力模块获取关键特征以提高行为识别准确率;在特征融合模块中引入Bi-LSTM网络获取视频前后的关联信息,实现双流特征融合;在行为分类模块中利用注意力机制实现自适应分配权重,从而进一步提升施工人员不安全行为识别的准确率。最后,采用UCF-101数据集和自建数据集进行模型训练和验证,该模型的累加乘积操作次数为7.73 G,参数量为5.38 M,均优于传统的双流CNN方法;此外,模型在2个数据集上的识别准确率分别为94.3%和94.8%,均优于双流CNN-MobileNetV3等其他轻量级模型。实验结果表明所提模型相对于传统双流CNN具有更低的计算复杂度、更小的模型参数量以及更高的识别准确率,适合在资源受限的边缘设备上部署与运行。 展开更多
关键词 不安全行为 行为识别 轻量化 双流卷积神经网络 双向长短时记忆网络 注意力机制
在线阅读 下载PDF
面向时空特征融合的GSTIN动作识别网络 被引量:1
19
作者 李克文 张震涛 +1 位作者 李素杰 雷永秀 《计算机应用研究》 CSCD 北大核心 2021年第8期2479-2484,共6页
视频动作识别是计算机视觉领域一个十分具有挑战性的课题,主要任务是利用深度学习等视频智能分析技术识别的深层信息推导出视频人体行为动作。通过结合双流卷积神经网络和三维卷积神经网络的结构特点,提出了一种面向时空特征融合的GSTIN... 视频动作识别是计算机视觉领域一个十分具有挑战性的课题,主要任务是利用深度学习等视频智能分析技术识别的深层信息推导出视频人体行为动作。通过结合双流卷积神经网络和三维卷积神经网络的结构特点,提出了一种面向时空特征融合的GSTIN(GoogLeNet based on spatio-temporal intergration network)。GSTIN中设计了时空特征融合模块InBST(inception blend spatio-temporal feature),提升网络对空间特征与时间特征的利用能力;在时空特征融合模块InBST基础上,构建了适合动作识别的多流网络结构。GSTIN在动作识别数据集UCF101、HMDB51上识别精度分别达到了93.8%和70.6%,这表明GSTIN与其他动作识别网络相比具有较好的识别性能。 展开更多
关键词 深度学习 动作识别 双流卷积神经网络 三维卷积神经网络 时空特征融合
在线阅读 下载PDF
残差膨胀卷积结构下的多模态特征调制方式识别
20
作者 左晓亚 张俊杰 +2 位作者 姚如贵 樊晔 蒋丽凤 《信号处理》 CSCD 北大核心 2023年第11期2013-2021,共9页
自动调制方式识别技术在通信领域有着不可或缺的作用,针对传统的卷积神经网络在信号分类问题中特征提取能力不足的问题,本文研究了一种利用多维度特征的端到端双流膨胀卷积神经网络来对调制信号进行分类的方法。该方法不仅利用原始采样... 自动调制方式识别技术在通信领域有着不可或缺的作用,针对传统的卷积神经网络在信号分类问题中特征提取能力不足的问题,本文研究了一种利用多维度特征的端到端双流膨胀卷积神经网络来对调制信号进行分类的方法。该方法不仅利用原始采样信号,还利用输入信号的瞬时幅度和相位信息;原始IQ(In-phase and Quadrature,IQ)数据输入进神经网络后,网络首先通过内置的数据预处理模块对输入的IQ信号进行预处理,提取原始信号的幅度和相位信息,再将原始IQ信号和幅度相位两种特征信息分别通过两个并行的卷积神经网络结构分别进行特征提取;本文所设计的双流卷积神经网络模型中的膨胀残差网络分支利用卷积核的膨胀卷积特性,将膨胀卷积与残差网络结构相结合,在网络参数不变的情况下使得卷积核具有更大的感受野,同时也能够更好地结合上下文信息,另一个网络分支是将卷积神经网络与长短期记忆神经网络相串联,然后将两个并行卷积神经网络的输出特征向量进行矩阵相乘达到两种特征信息融合的目的。整个识别过程是基于端到端的,数据预处理模块内嵌到神经网络内部,由神经网络完成对数据的预处理,只需将原始的IQ数据直接送入神经网络即可;仿真实验结果显示相比较于单分支结构的卷积神经网络模型或者循环神经网络模型,本文所提出的基于残差膨胀卷积的双流网络结构在数据集RML2016.10a上识别准确率有了极大地提升,识别准确率最高能够达到85%,同时对于单分支结构无法识别的16QAM和64QAM两种信号,本文模型也具有一定的分类能力。 展开更多
关键词 调制方式识别 膨胀卷积 双流卷积神经网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部