期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
基于句子转换和双注意力机制的归纳关系预测
1
作者 李卫军 刘雪洋 +3 位作者 刘世侠 王子怡 丁建平 苏易礌 《计算机应用研究》 北大核心 2025年第6期1742-1748,共7页
关系预测是知识图谱补全中的一项重要任务,旨在预测实体之间缺失的关系。现有归纳关系预测方法通常面临语义信息和结构信息建模不足的问题,因此提出了一种基于句子转换和双注意力机制的归纳关系预测模型。该方法通过自动化检索描述增强... 关系预测是知识图谱补全中的一项重要任务,旨在预测实体之间缺失的关系。现有归纳关系预测方法通常面临语义信息和结构信息建模不足的问题,因此提出了一种基于句子转换和双注意力机制的归纳关系预测模型。该方法通过自动化检索描述增强了实体语义表示,并引入边缘感知和关系感知的双注意力机制,以准确建模实体间的复杂交互。首先提取目标三元组的封闭子图,结合随机行走寻径策略寻找多跳关系路径,并将三元组和路径转换为自然语言句子,生成语义丰富的句子嵌入;然后采用GCN和双向GRU进行子图嵌入更新,结合句子嵌入和子图嵌入以捕获结构和语义信息。在WN18RR、FB15k-237、NELL-995三个公开数据集上的实验结果表明,提出方法在转换和归纳关系预测任务中的性能优于现有方法,验证了双注意力机制和句子转换在提升模型性能中的重要性,有效地提升了知识图谱中关系预测的准确性和效率。 展开更多
关键词 知识图谱 归纳关系预测 句子转换 双注意力机制 随机行走寻径策略
在线阅读 下载PDF
基于特征时间双注意力机制的短期光伏发电预测深度学习模型研究
2
作者 王建军 潘佳音 +1 位作者 赵珍珠 肇启迪 《智慧电力》 北大核心 2025年第4期81-87,共7页
针对光伏发电预测中存在的输入特征变量选择不精准和长时间历史信息难以捕捉等问题,提出一种基于特征时间双注意力机制的短期光伏发电功率预测深度学习模型(DA-GRU)。利用特征注意力机制挖掘不同影响特征对光伏发电功率的重要程度,通过... 针对光伏发电预测中存在的输入特征变量选择不精准和长时间历史信息难以捕捉等问题,提出一种基于特征时间双注意力机制的短期光伏发电功率预测深度学习模型(DA-GRU)。利用特征注意力机制挖掘不同影响特征对光伏发电功率的重要程度,通过时间注意力机制衡量历史信息在不同时间点上的重要性,从而有效捕捉长时间序列上的变化趋势。算例分析表明,所提模型在各项评价指标上均优于其它对比模型,说明其对复杂非线性光伏发电功率数据有较好的适应性。 展开更多
关键词 光伏发电预测 阶段注意力机制 门控循环单元
在线阅读 下载PDF
一种耦合条带卷积和双注意力机制的彩钢板建筑物提取方法
3
作者 贺鹏程 杨树文 +1 位作者 单文超 杨海燕 《遥感信息》 北大核心 2025年第2期87-95,共9页
针对高分辨率遥感影像中彩钢板建筑物具有尺度差异大、类内颜色特征不稳定等问题,提出一种基于改进UNet网络的彩钢板建筑物提取方法(MFEDNet)。在编码器部分,利用新构建的多尺度特征增强模块替代原始UNet双卷积操作,提高模型多尺度特征... 针对高分辨率遥感影像中彩钢板建筑物具有尺度差异大、类内颜色特征不稳定等问题,提出一种基于改进UNet网络的彩钢板建筑物提取方法(MFEDNet)。在编码器部分,利用新构建的多尺度特征增强模块替代原始UNet双卷积操作,提高模型多尺度特征感知能力的同时能获取更为广泛的上下文信息。在跳跃连接阶段引入双注意力机制增强模型对特征的学习能力,其中的通道注意力模块有效增强了彩钢板建筑物类别颜色信息,解决了类内颜色特征不稳定问题。在自建的GCS数据集和开源CSS数据集上分别进行了对比实验,precision和OA分别达到了87.02%、92.26%和96.55%、92.63%,显著高于对比实验方法。实验结果表明,该方法能够有效提取彩钢板建筑物,避免了误提及空洞现象。 展开更多
关键词 深度学习 高分辨率遥感影像 彩钢板建筑物 提取 条带卷积 双注意力机制
在线阅读 下载PDF
基于双注意力机制的MSCN-BiGRU的滚动轴承故障诊断方法 被引量:6
4
作者 王敏 邓艾东 +2 位作者 马天霆 张宇剑 薛原 《振动与冲击》 EI CSCD 北大核心 2024年第6期84-92,103,共10页
针对滚动轴承故障诊断模型在变工况和环境噪声干扰下诊断精度降低的问题,提出一种基于双注意力机制的多尺度卷积网络(dual attention and multi-scale convolutional networks,DAMSCN)与改进的双向门控循环单元(bidirectional gated rec... 针对滚动轴承故障诊断模型在变工况和环境噪声干扰下诊断精度降低的问题,提出一种基于双注意力机制的多尺度卷积网络(dual attention and multi-scale convolutional networks,DAMSCN)与改进的双向门控循环单元(bidirectional gated recurrent unit,BiGRU)组成的故障诊断模型DAMSCN-BiGRU。首先,多尺度特征融合模块使用不同大小的卷积核,获得多种感受野,从而提取到轴承原始振动信号的多尺度特征信息,并根据重要性对其进行自适应融合,然后利用通道注意力和空间注意力组成的双注意力模块(dual attention module,DAM)对多尺度特征进行重新标定,分配注意力权重,削弱融合特征中的冗余特征;然后,增加注意力层和利用分段激活改进BiGRU进而挖掘信号的时域特征,以提高轴承故障诊断的性能;最后,通过Softmax层完成对不同故障的分类。试验结果表明,与其他智能诊断模型相比,DAMSCN-BiGRU在变工况环境下,平均诊断精度达到98.2%,在强噪声背景下仍然有着85.3%的准确率,且在不同程度的噪声强度下效果均优于其他常用模型,有利于促进滚动轴承的智能故障诊断研究和实际应用。 展开更多
关键词 滚动轴承 故障诊断 多尺度特征融合 双注意力机制 向门控循环单元(BiGRU)
在线阅读 下载PDF
融合ASPP与双注意力机制的建筑物提取模型 被引量:2
5
作者 于明洋 徐海青 +2 位作者 张文焯 徐帅 周放亮 《航天返回与遥感》 CSCD 北大核心 2024年第1期136-146,共11页
精准高效地从高分辨率遥感影像中提取建筑物信息对国土规划和地图制图意义重大,近年来基于卷积神经网络进行建筑物信息提取已经取得了很大的进展,然而在处理高分辨率遥感影像时仍存在影像的高级语义特征利用不够充分,难以获得细节丰富... 精准高效地从高分辨率遥感影像中提取建筑物信息对国土规划和地图制图意义重大,近年来基于卷积神经网络进行建筑物信息提取已经取得了很大的进展,然而在处理高分辨率遥感影像时仍存在影像的高级语义特征利用不够充分,难以获得细节丰富高精度分割影像的问题。文章针对以上问题提出了一种用于建筑物自动提取的深度学习网络结构空洞空间与通道感知网络(Atrous Space and Channel Perception Network,ASCP-Net)。该模型将空洞空间金子塔池化(Atrous Spatial Pyramid Pooling, ASPP)和空间与通道注意力(Spatial and Channel Attention, SCA)模块融入到编码器-解码器结构中,通过ASPP模块来捕获和聚合多尺度上下文信息,采用SCA模块选择性增强特定位置和通道中更有用的信息,并将高低层特征信息输入解码网络完成建筑物信息的高效提取。在WHU建筑数据集(WHU Building Dataset)上进行实验,结果表明:文章提出的方法总体精度和F1评分分别达到了97.4%和94.6%,相比其他模型能够获得更清晰的建筑物边界,尤其对图像边缘不完整建筑的提取效果较好,有效提升了建筑物提取的精度和完整性。 展开更多
关键词 高分辨率遥感影像 双注意力机制 空洞卷积 建筑物提取
在线阅读 下载PDF
通道分离双注意力机制的目标检测算法 被引量:20
6
作者 赵珊 郑爱玲 +1 位作者 刘子路 高雨 《计算机科学与探索》 CSCD 北大核心 2023年第5期1112-1125,共14页
对于两阶段目标检测算法中模型存在检测精度低、小目标漏检率高等问题,提出通道分离双注意力机制的目标检测算法,通过改进Faster+FPN主干网络来提高小目标的检测精度。首先针对神经网络不能自动学习特征间的重要性问题,在通道分离过程... 对于两阶段目标检测算法中模型存在检测精度低、小目标漏检率高等问题,提出通道分离双注意力机制的目标检测算法,通过改进Faster+FPN主干网络来提高小目标的检测精度。首先针对神经网络不能自动学习特征间的重要性问题,在通道分离过程中提出双注意力机制来构建深度神经网络,另结合分组卷积、空洞卷积等技术减少网络参数。其次针对高分辨率特征经过深度CNN后导致的信息丢失问题,通过添加细节提取模块以及通道注意力特征融合模块来提取更多的细节特征。最后考虑到一般损失函数不可重点评估目标物位置的置信度,结合KL散度进行损失函数优化,通过训练使得预测分布更接近真实分布,有效地解决了神经网络直接用于目标检测存在的问题。采用PASCAL VOC2007、KITTI以及Pedestrian三类数据集对网络进行训练,并将提出的模型与多个目标检测算法进行对比。实验结果表明,该算法能够高效地对图像进行识别,且具有较高的检测精度。 展开更多
关键词 通道分离 双注意力机制 特征金字塔网络(FPN) KL散度 目标检测
在线阅读 下载PDF
判别相关分析双注意力机制的目标检测算法 被引量:3
7
作者 赵珊 郑爱玲 《计算机工程与应用》 CSCD 北大核心 2022年第17期120-129,共10页
针对两阶段目标检测算法中模型存在目标识别率低、部分小目标物漏检等问题,提出了一种基于判别相关分析的双注意力机制的目标检测算法。该算法通过改进Faster R-CNN主干网络,引入判别相关分析技术最大化两个特征集中对应特征的相关关系... 针对两阶段目标检测算法中模型存在目标识别率低、部分小目标物漏检等问题,提出了一种基于判别相关分析的双注意力机制的目标检测算法。该算法通过改进Faster R-CNN主干网络,引入判别相关分析技术最大化两个特征集中对应特征的相关关系,同时最大化不同类之间的差异,来保证信息间的交互,有效缓解常规特征融合方式存在的特征提取能力不足问题。同时,结合残差结构构建残差双注意力机制,进行深层次的特征提取,来弥补深度CNN后高分辨率信息弱化问题,采用混合卷积层的设计在扩大感受野的同时又减少了信息损失,最大限度地保证了网络的特征提取性能。采用PASCAL VOC2007、KITTI以及Portrait三类数据集对网络进行训练,并将提出的算法模型与多个经典目标检测算法进行对比。实验结果表明,提出的算法具有较高的检测精度。 展开更多
关键词 判别相关分析 残差双注意力机制 混合卷积层 目标检测
在线阅读 下载PDF
结合双注意力机制和级联思想的肝肿瘤分割 被引量:6
8
作者 王岩 董方旭 《小型微型计算机系统》 CSCD 北大核心 2021年第6期1276-1280,共5页
针对肝脏肿瘤存在的分割难点结合级联网络的思想,提出了一种融合了双注意力机制和U-Net架构优势的肝脏肿瘤分割网络(CDA-Net).首先,训练第一个DA-Net来实现肝脏的粗略分割;然后将第一阶段的分割结果与原始CT图做与操作,提取感兴趣区域,... 针对肝脏肿瘤存在的分割难点结合级联网络的思想,提出了一种融合了双注意力机制和U-Net架构优势的肝脏肿瘤分割网络(CDA-Net).首先,训练第一个DA-Net来实现肝脏的粗略分割;然后将第一阶段的分割结果与原始CT图做与操作,提取感兴趣区域,并将其输入第2个DA-Net实现肝肿瘤的精确分割;最后利用条件随机场对分割结果进行边缘约束,优化分割结果.在LiTS2017数据集上对模型进行训练及测试,平均Dice指标为0.658.实验结果表明,本文提出的方法具有较好的精度,证实了其对肿瘤分割的有效性. 展开更多
关键词 双注意力机制 级联式思想 CDA-Net网络 肝肿瘤 条件随机场
在线阅读 下载PDF
融合时空切片和双注意力机制的视频摘要方法 被引量:2
9
作者 张云佐 郭亚宁 李文博 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第12期127-135,共9页
为解决现有视频摘要方法的视频帧特征信息提取不充分、摘要结果过分依赖单一特征的问题,提出了一种融合时空切片和双注意力机制的视频摘要方法。在原视频的精准分段阶段,提出了基于时空切片的核时序分割算法(STS-KTS),将视频场景信息反... 为解决现有视频摘要方法的视频帧特征信息提取不充分、摘要结果过分依赖单一特征的问题,提出了一种融合时空切片和双注意力机制的视频摘要方法。在原视频的精准分段阶段,提出了基于时空切片的核时序分割算法(STS-KTS),将视频场景信息反映为时空切片纹理信息,采用水平映射法将预处理后的时空切片投影为一维数组,作为KTS的输入特征;以双注意力机制和分组卷积为基本组件,结合BiLSTM构建时空特征提取网络,以快速提取丰富的时空特征信息,从而配合纹理特征信息消除现有摘要模型对单一特征的过分依赖;采用帧参数预测模块获取最佳的视频帧贡献度分数、中心度分数以及帧序列位置;将帧分数转化为镜头分数,以选取内容丰富的片段,进而生成动态视频摘要。在SumMe和TVSum数据集上的实验表明:所提方法能提高生成摘要的准确性,比现有方法性能更高,尤其在SumMe数据集上的生成摘要准确性相比于现有方法提升了0.58%。 展开更多
关键词 视频摘要 时空切片 双注意力机制 时空特征提取 深度学习
在线阅读 下载PDF
基于双注意力机制的COVID-19病灶CT图像分割方法 被引量:2
10
作者 姜杨 刘成 +1 位作者 丁其川 王力 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第9期1259-1268,共10页
从CT图像中快速、准确地分割出新型冠状病毒肺炎(COVID-19)病灶区域,是实现对COVID-19计算机辅助诊疗的重要环节,为此提出了一种基于双注意力机制的COVID-19病灶CT图像分割方法.首先,引入门控注意力AG模块从空间上增强对病灶区域的关注... 从CT图像中快速、准确地分割出新型冠状病毒肺炎(COVID-19)病灶区域,是实现对COVID-19计算机辅助诊疗的重要环节,为此提出了一种基于双注意力机制的COVID-19病灶CT图像分割方法.首先,引入门控注意力AG模块从空间上增强对病灶区域的关注,降低图像亮度不均衡、低对比度对分割精度的影响;其次,引入结合残差单元的SE-Res模块对病灶区域进行通道增强,提取细微结构特征,提高网络对病灶形状变化较大和磨玻璃边界区域的分割性能.在COVID-19公共数据集上实验表明,所提出方法达到的Dice系数、阳性预测值、交并比分别为0.9088,0.9152,0.8589,与前期研究相比,分别提高了0.75%,0.11%,0.65%.所提出方法能提高对病灶形状变化较大区域和磨玻璃边界的分割精度,整体性能优于当前主流模型. 展开更多
关键词 图像处理 医学图像分割 新型冠状病毒肺炎 双注意力机制 UNet
在线阅读 下载PDF
基于多尺度卷积和选择性核双注意力机制的半监督全景X射线图像龋齿分割
11
作者 薛钟毫 姜金刚 +2 位作者 孙健鹏 潘洁 张嘉伟 《仪器仪表学报》 2025年第6期241-250,共10页
全景X射线图像的龋齿分割是进行早期龋齿检测以及后续治疗的重要前提,为实现全景X射线图像中龋齿的精确自动分割,提出一种具有多尺度卷积和选择性核双注意力机制的半监督学习框架,该方法旨在利用大量未标注数据增强模型泛化能力,并缓解... 全景X射线图像的龋齿分割是进行早期龋齿检测以及后续治疗的重要前提,为实现全景X射线图像中龋齿的精确自动分割,提出一种具有多尺度卷积和选择性核双注意力机制的半监督学习框架,该方法旨在利用大量未标注数据增强模型泛化能力,并缓解龋齿病灶区域边界模糊、对比度低等问题。框架设计上,采用教师-学生双网络结构,通过多尺度卷积注意力机制对学生网络多层解码器进行深度监督,提升对边界细节和类间相似区域的判别能力。同时,引入选择性核注意力机制融合教师网络的多级预测结果,根据像素不确定性自适应选择不同卷积核,生成精确的不确定性掩模图,引导学生网络优化学习。实验在数据集1和2上进行,结果显示,在265切片数据上联合使用双注意力机制较基线模型在Dice系数、查准率和灵敏度分别提升3.91%、2.14%和5.35%;在530切片数据上则提升1.39%、5.69%和12.34%,验证了方法在大规模数据下的稳定性和适应性。与传统全监督模型相比,所提出的方法在Dice系数、查准率和灵敏度上最高分别提升22.27%、17.64%和24.57%;相比最新半监督模型也分别提升最多14.54%、14.81%和11.96%。本研究不仅有效提升了龋齿分割性能,同时也为全景X射线图像处理提供了一种精确的分割方案。 展开更多
关键词 龋齿分割 半监督学习 双注意力机制 全景X射线图像
在线阅读 下载PDF
双注意力驱动的微小缺陷识别方法研究
12
作者 邹林丰 邓耀华 +1 位作者 陈冠浩 张紫琳 《中国测试》 北大核心 2025年第3期162-169,共8页
针对深度卷积提取过程中微小缺陷特征消失问题,该文提出融合双注意力机制和跃进残差结构的微小缺陷识别深度卷积网络模型,该模型在训练过程中分别在通道维度和空间维度将权重更多地偏向目标特征,更多地关注到微小缺陷特征,抑制冗余缺陷... 针对深度卷积提取过程中微小缺陷特征消失问题,该文提出融合双注意力机制和跃进残差结构的微小缺陷识别深度卷积网络模型,该模型在训练过程中分别在通道维度和空间维度将权重更多地偏向目标特征,更多地关注到微小缺陷特征,抑制冗余缺陷特征;同时为了进一步缓解深度卷积中微小缺陷特征消失的问题,设计跃进残差结构通过少量的支路连接将微小缺陷特征传递到深层网络,既减少微小缺陷特征漏检,同时提高支路卷积计算速度。以实际采集的布匹缺陷数据集开展模型测试实验。该文提出的模型相比于ResNet50、ResNet101,微小缺陷的识别率分别提高6.79%和6.88%,证明该文模型在微小缺陷识别任务中的有效性。 展开更多
关键词 微小缺陷识别 双注意力机制 残差网络 深度卷积神经网络
在线阅读 下载PDF
基于双通道注意力机制的AE-BIGRU交通流预测模型 被引量:1
13
作者 黄艳国 何烜 杨仁峥 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第5期1774-1782,共9页
交通流预测是智能交通系统的关键。针对目前交通流数据复杂的时空关联性以及自身的不确定性,为准确预测高速公路交通流并缓解交通拥堵问题,提出以自编码器网络(AE)和双向门控循环单元(BIGRU)相结合的深度学习组合预测模型(AE-BIGRU),并... 交通流预测是智能交通系统的关键。针对目前交通流数据复杂的时空关联性以及自身的不确定性,为准确预测高速公路交通流并缓解交通拥堵问题,提出以自编码器网络(AE)和双向门控循环单元(BIGRU)相结合的深度学习组合预测模型(AE-BIGRU),并在此基础上引入双通道注意力机制进行模型训练。将预处理后的数据采用滑动窗口的方式作为参数输入模型,通过AE提取交通流的空间特征,得到输入信息特征的最优抽象表示;利用BIGRU从前向和后向传播中获取信息,充分提取交通流的时间相关特征,更全面地捕捉时间演变规律;最后结合双通道注意力机制,增强预测模型的特征提取能力,最大限度地保留特征信息,提升模型的预测精度,从而得到最终短时流量的预测目标值。为验证模型的适用性,采用多组短时交通流数据进行仿真实验,与其他基准模型对比发现:该交通流预测模型能够有效捕获交通流的动态时空特征,加强关键信息的提取,所预测的流量更加接近真实值,具有良好的泛化能力。其中测试集的均方根误差值下降了约0.061~0.604,平均绝对误差值下降了约0.025~0.512,相关系数值R2提高了约0.007~0.062。研究结果表明,随着预测步长的增加,该实验模型在交通流数据的时间特性上仍能表现出稳定的预测性能,所建的组合预测模型在预测精度和鲁棒性方面表现出更高水平。 展开更多
关键词 智能交通 交通流预测 AE-BIGRU模型 深度学习 通道注意力机制
在线阅读 下载PDF
基于特征校准的双注意力遮挡行人检测器
14
作者 汤书苑 周一青 +2 位作者 李锦涛 刘畅 石晶林 《西安电子科技大学学报》 CSCD 北大核心 2024年第6期25-39,共15页
基于计算机视觉的行人检测技术面临的主要挑战之一是遮挡问题,包括自然环境中物体对行人造成的类间遮挡以及行人与行人之间的类内遮挡。这些交织的遮挡模式限制了行人检测器的性能。为此,在Faster R-CNN标准行人检测框架的基础上,提出... 基于计算机视觉的行人检测技术面临的主要挑战之一是遮挡问题,包括自然环境中物体对行人造成的类间遮挡以及行人与行人之间的类内遮挡。这些交织的遮挡模式限制了行人检测器的性能。为此,在Faster R-CNN标准行人检测框架的基础上,提出了一种基于特征校准的双注意力检测网络。该网络首先通过监督学习生成注意力掩码,用以表征图像中的行人空间特征;然后将掩码与主干特征融合,并结合通道注意力机制,校准行人区域。该方法能够增强行人的可见区域,同时减弱遮挡部分对分类和回归的干扰。此外,提出了一种基于遮挡率的非均匀采样策略,专门针对难例进行采样,帮助网络更有效地学习复杂遮挡模式。实验结果表明,与标准行人检测器相比,所提方法在CityPersons验证集的合理遮挡子集上性能提升了约2.5%。 展开更多
关键词 卷积神经网络 行人检测 双注意力机制 特征校准 难例挖掘 遮挡率
在线阅读 下载PDF
基于双分支注意力U-Net的语音增强方法 被引量:2
15
作者 曹洁 王宸章 +2 位作者 梁浩鹏 王乔 李晓旭 《计算机应用研究》 CSCD 北大核心 2024年第4期1112-1116,共5页
针对语音增强网络对全局语音相关特征提取困难、对语音局部上下文信息的捕捉效果不佳的问题,提出了一种基于双分支注意力U-Net的时域语音增强方法,该方法使用U-Net编码器-解码器结构,将单通道带噪语音经过一维卷积后得到的高维时域特征... 针对语音增强网络对全局语音相关特征提取困难、对语音局部上下文信息的捕捉效果不佳的问题,提出了一种基于双分支注意力U-Net的时域语音增强方法,该方法使用U-Net编码器-解码器结构,将单通道带噪语音经过一维卷积后得到的高维时域特征作为输入。首先利用残差连接设计了基于Conformer的残差卷积来增强网络降噪的能力。其次设计了双分支注意力机制结构,利用全局和局部注意力获取带噪语音中更丰富的上下文信息,同时有效表示长序列特征,提取更多样的特征信息。最后结合时域频域损失函数构建了加权损失函数对网络进行训练,提高网络的语音增强性能。使用了多个指标对增强语音的质量和可懂度等进行评价,在公开数据集Voice Bank+DEMAND上的增强后的语音感知质量(PESQ)为3.11,短时可懂度(STOI)为95%,信号失真度(CSIG)为4.44,噪声失真测(CBAK)为3.60,综合质量测度(COVL)为3.81,其中PESQ相较于SE-Conformer提高了7.6%,相较于TSTNN提高了5.1%。实验结果表明,所提方法在语音降噪的各个指标都表现出更优的实验结果,能够完成语音增强任务的相关要求。 展开更多
关键词 语音增强 分支注意力机制 时域 单通道
在线阅读 下载PDF
融合注意机制的多尺度自适应空洞卷积面部情感识别方法
16
作者 王春影 孟天宇 +2 位作者 张震 葛雄心 杨继伟 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期90-97,共8页
针对面部不连续动作单元的关联特征提取困难,以及不同面部区域对表情识别影响程度不一可能引入无用信息的问题,提出了一种基于双分支注意力机制的多尺度自适应空洞卷积模型(dual branching attention mechanism-adaptive multi-scale di... 针对面部不连续动作单元的关联特征提取困难,以及不同面部区域对表情识别影响程度不一可能引入无用信息的问题,提出了一种基于双分支注意力机制的多尺度自适应空洞卷积模型(dual branching attention mechanism-adaptive multi-scale dilated convolution,DAM-ADCNN)。模型通过双分支注意力机制生成特征映射,表征面部动作单元的局部和全局分布及关联关系;利用多尺度空洞卷积提取面部不连续动作单元的关键特征;采用自适应方式动态调整不同尺度关联特征的权重,以有效减少无用信息的干扰。结果表明,DAM-ADCNN模型在情感识别任务中的表现优于现有方法。在DEAP数据集的唤醒和效价维度上,模型的识别准确率分别提升了3.66%和3.99%。同时,在CK+数据集上,模型的识别准确率提高了3.93%。这些结果证明了DAM-ADCNN模型在面部表情情感识别中的有效性。 展开更多
关键词 面部情感识别 分支注意力机制 空洞卷积 自适应权重
在线阅读 下载PDF
基于改进双阶段注意力机制的降水智能预报 被引量:3
17
作者 戈苗苗 陆振宇 +1 位作者 梁邵阳 夏英茹 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2021年第6期744-752,共9页
为提高现有时间序列算法降水预报的准确率,本文提出一种基于改进双阶段注意力机制的时间序列降水预报模型(DeepAMogLSTM).该算法分为两部分,在输入注意力机制中,使用三层注意力机制对输入序列进行多重关注,选择稳定的输入特征;在时间注... 为提高现有时间序列算法降水预报的准确率,本文提出一种基于改进双阶段注意力机制的时间序列降水预报模型(DeepAMogLSTM).该算法分为两部分,在输入注意力机制中,使用三层注意力机制对输入序列进行多重关注,选择稳定的输入特征;在时间注意力中,通过选择与目标值最相关的隐层状态,捕获时间序列的长期相关性.算法同时引入形变长短时记忆网络(Mogrifier LSTM),增强模型特征表示能力.模型使用2016-2019年预处理的自动站点特征数据和欧洲中期天气预报中心(ECMWF)气象场模式资料进行集成预报,并利用同期实况观测资料进行模式预报订正.实验结果表明:该模型在时效为2 h的降水预报中,各项数值评价指标均有改善,其中均方根误差为1.877 mm,平均绝对误差为0.727 mm,拟合优度(R^(2))为0.783;同时与其他模型预报订正效果相比,该模型较好地拟合了实际降水空间分布. 展开更多
关键词 时间序列预测 降水量预测 形变LSTM 阶段注意力机制
在线阅读 下载PDF
基于视觉关联与上下文双注意力的图像描述生成方法 被引量:15
18
作者 刘茂福 施琦 聂礼强 《软件学报》 EI CSCD 北大核心 2022年第9期3210-3222,共13页
图像描述生成有着重要的理论意义与应用价值,在计算机视觉与自然语言处理领域皆受到广泛关注.基于注意力机制的图像描述生成方法,在同一时刻融合当前词和视觉信息以生成目标词,忽略了视觉连贯性及上下文信息,导致生成描述与参考描述存... 图像描述生成有着重要的理论意义与应用价值,在计算机视觉与自然语言处理领域皆受到广泛关注.基于注意力机制的图像描述生成方法,在同一时刻融合当前词和视觉信息以生成目标词,忽略了视觉连贯性及上下文信息,导致生成描述与参考描述存在差异.针对这一问题,提出一种基于视觉关联与上下文双注意力机制的图像描述生成方法(visual relevance and context dual attention, VRCDA).视觉关联注意力在传统视觉注意力中增加前一时刻注意力向量以保证视觉连贯性,上下文注意力从全局上下文中获取更完整的语义信息,以充分利用上下文信息,进而指导生成最终的图像描述文本.在MSCOCO和Flickr30k两个标准数据集上进行了实验验证,结果表明所提出的VRCDA方法能够有效地生成图像语义描述,相比于主流的图像描述生成方法,在各项评价指标上均取得了较高的提升. 展开更多
关键词 图像描述生成 双注意力机制 视觉关联注意力 上下文注意力
在线阅读 下载PDF
融合注意力机制的深度混合推荐算法 被引量:5
19
作者 段超 张婧 +1 位作者 何彬 陈增照 《计算机应用研究》 CSCD 北大核心 2021年第9期2624-2627,2634,共5页
大量研究利用用户或项目的边信息来缓解视频推荐中的数据稀疏和冷启动问题,取得了一定的效果,但是没有关注辅助信息中的关键信息。针对此问题进行了研究,提出了一种融合双注意力机制的深度混合推荐模型。该模型通过融合自注意力机制的... 大量研究利用用户或项目的边信息来缓解视频推荐中的数据稀疏和冷启动问题,取得了一定的效果,但是没有关注辅助信息中的关键信息。针对此问题进行了研究,提出了一种融合双注意力机制的深度混合推荐模型。该模型通过融合自注意力机制的卷积神经网络挖掘项目端隐藏因子,同时融合自注意力机制的堆栈去噪自编码器提取用户端隐藏因子,深度挖掘项目端和用户端的重要信息。最后,通过结合概率矩阵分解实现视频评分预测。在两个公开数据集上的大量实验结果表明,提出的方法结果在已有ConvMF+、PHD、DUPIA等基线模型基础上有一定提升。 展开更多
关键词 双注意力机制 协同过滤 卷积神经网络 自编码器
在线阅读 下载PDF
基于DenseNet与注意力机制的遥感影像云检测算法 被引量:7
20
作者 刘广进 王光辉 +2 位作者 毕卫华 刘慧杰 杨化超 《自然资源遥感》 CSCD 北大核心 2022年第2期88-96,共9页
遥感影像云检测是遥感影像处理过程中的第一步,针对传统的云检测算法小块薄云检测效果差的问题,该文提出了一种融合注意力机制的密集连接网络遥感影像云检测方法。首先,将自然资源部国土卫星遥感应用中心提供的影像人工勾取云矢量并制... 遥感影像云检测是遥感影像处理过程中的第一步,针对传统的云检测算法小块薄云检测效果差的问题,该文提出了一种融合注意力机制的密集连接网络遥感影像云检测方法。首先,将自然资源部国土卫星遥感应用中心提供的影像人工勾取云矢量并制作云标签,再将其进行顺序裁剪、色彩抖动、旋转等预处理,以增广样本量;然后,将预处理过后的遥感影像及其标签一并输入到以DenseNet作为编码器与解码器的神经网络中,编码器与解码器之间加入级联的空洞卷积模块以增大感受野,双注意力机制与全局上下文建模模块以抑制一些无关的细节信息;最后,经过实验验证表明其精确率可以达到95%以上,交并比可以达到91%以上,较传统云检测算法有较大提高,可以很好地提取小块薄云。 展开更多
关键词 云检测 DenseNet 双注意力机制 全局上下文建模模块 空洞卷积
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部