针对基于稀疏编码的超分辨率算法噪点、伪影较多的问题,提出一种双正则化参数核磁共振图像超分算法。该算法引入在线字典学习方法,以训练正则化参数λt分开训练生成精确的超完备字典对,并调整重建正则化参数λr,得到最佳的稀疏系数用于...针对基于稀疏编码的超分辨率算法噪点、伪影较多的问题,提出一种双正则化参数核磁共振图像超分算法。该算法引入在线字典学习方法,以训练正则化参数λt分开训练生成精确的超完备字典对,并调整重建正则化参数λr,得到最佳的稀疏系数用于恢复目标高分图像。实验结果表明:改进算法比双字典学习超分法的目标图像峰值信噪比和结构相似性平均值分别提高了1.30 d B和0.023,有效地抑制了噪点和边缘伪影,较大幅度地提升了核磁共振图像的超分效果。展开更多
针对传统正则化超分辨率(SR)重建模型中,正则化参数选择过大会使重建结果模糊,导致边缘和纹理等细节丢失,选择过小模型去噪能力又不足的问题,提出一种基于结构张量的双正则化参数的视频超分辨率重建算法。首先,利用局部结构张量对图...针对传统正则化超分辨率(SR)重建模型中,正则化参数选择过大会使重建结果模糊,导致边缘和纹理等细节丢失,选择过小模型去噪能力又不足的问题,提出一种基于结构张量的双正则化参数的视频超分辨率重建算法。首先,利用局部结构张量对图像进行平滑区域和边缘的检测;然后,利用差异曲率对全变分(TV)进行先验信息加权;最后,对平滑区域和边缘采用不同的正则化参数进行超分辨率重建。实验数据显示提出的算法将峰值信噪比(PSNR)提高了0.033~0.11 d B,具有较好的重建效果。实验结果表明:该算法能够有效地提升低分辨率(LR)视频帧重建效果,可应用于低分辨率视频增强、车牌识别和视频监控中感兴趣目标增强等方面。展开更多
文摘针对基于稀疏编码的超分辨率算法噪点、伪影较多的问题,提出一种双正则化参数核磁共振图像超分算法。该算法引入在线字典学习方法,以训练正则化参数λt分开训练生成精确的超完备字典对,并调整重建正则化参数λr,得到最佳的稀疏系数用于恢复目标高分图像。实验结果表明:改进算法比双字典学习超分法的目标图像峰值信噪比和结构相似性平均值分别提高了1.30 d B和0.023,有效地抑制了噪点和边缘伪影,较大幅度地提升了核磁共振图像的超分效果。
文摘针对传统正则化超分辨率(SR)重建模型中,正则化参数选择过大会使重建结果模糊,导致边缘和纹理等细节丢失,选择过小模型去噪能力又不足的问题,提出一种基于结构张量的双正则化参数的视频超分辨率重建算法。首先,利用局部结构张量对图像进行平滑区域和边缘的检测;然后,利用差异曲率对全变分(TV)进行先验信息加权;最后,对平滑区域和边缘采用不同的正则化参数进行超分辨率重建。实验数据显示提出的算法将峰值信噪比(PSNR)提高了0.033~0.11 d B,具有较好的重建效果。实验结果表明:该算法能够有效地提升低分辨率(LR)视频帧重建效果,可应用于低分辨率视频增强、车牌识别和视频监控中感兴趣目标增强等方面。