利用地沟油与正常食用油的导电率不同导致单位体积电阻不同,提出一种基于互补金属氧化物半导体工艺(Complementary Metal Oxide Semiconductor,CMOS)的线性检测模块。由于使用直接选择与短接到地的方法实现电阻串分压,使得分压线性度更...利用地沟油与正常食用油的导电率不同导致单位体积电阻不同,提出一种基于互补金属氧化物半导体工艺(Complementary Metal Oxide Semiconductor,CMOS)的线性检测模块。由于使用直接选择与短接到地的方法实现电阻串分压,使得分压线性度更高。在脉冲计数的作用下,电阻分压通过与参考电压相比较可以得到不同的高电平数,不仅可以区分地沟油与正常食用油,还可以得出正常油掺入地沟油的质量分数。在检测计核心电路设计方面,由于采用CMOS工艺设计,所以可以实现低面积和低功耗的检测。展开更多
介绍了一种半导体照明光源恒流驱动芯片的设计。该芯片采用0.6μm CM O S标准工艺制造,包含有大功率M O SFET、带隙基准源电路、输出缓冲电路和取样反馈控制电路几个主要功能模块,在标准工艺线上实现了功率器件与控制电路的单片集成。...介绍了一种半导体照明光源恒流驱动芯片的设计。该芯片采用0.6μm CM O S标准工艺制造,包含有大功率M O SFET、带隙基准源电路、输出缓冲电路和取样反馈控制电路几个主要功能模块,在标准工艺线上实现了功率器件与控制电路的单片集成。该芯片可为工作电压为3.5 V,工作电流为350 mA的单个半导体照明光源提供恒定的驱动电流。在5 V电源电压有10%跳变的情况下,半导体照明光源的驱动电流的变化可被控制在1.71%以内,而距离光源10 cm处的照度变化仅为1.28%。当环境温度由25°C升高至85°C时,半导体照明光源的驱动电流减小1.14%,而距离光源10 cm处的照度仅减小1.09%。该恒流驱动芯片的电源效率可达63.4%。展开更多
研究了不同沟道和栅氧化层厚度的n-M O S器件在衬底正偏压的VG=VD/2热载流子应力下,由于衬底正偏压的不同对器件线性漏电流退化的影响。实验发现衬底正偏压对沟长0.135μm,栅氧化层厚度2.5 nm器件的线性漏电流退化的影响比沟长0.25μm,...研究了不同沟道和栅氧化层厚度的n-M O S器件在衬底正偏压的VG=VD/2热载流子应力下,由于衬底正偏压的不同对器件线性漏电流退化的影响。实验发现衬底正偏压对沟长0.135μm,栅氧化层厚度2.5 nm器件的线性漏电流退化的影响比沟长0.25μm,栅氧化层厚度5 nm器件更强。分析结果表明,随着器件沟长继续缩短和栅氧化层减薄,由于衬底正偏置导致的阈值电压减小、增强的寄生NPN晶体管效应、沟道热电子与碰撞电离空穴复合所产生的高能光子以及热电子直接隧穿超薄栅氧化层产生的高能光子可能打断S i-S iO2界面的弱键产生界面陷阱,加速n-M O S器件线性漏电流的退化。展开更多
文摘利用地沟油与正常食用油的导电率不同导致单位体积电阻不同,提出一种基于互补金属氧化物半导体工艺(Complementary Metal Oxide Semiconductor,CMOS)的线性检测模块。由于使用直接选择与短接到地的方法实现电阻串分压,使得分压线性度更高。在脉冲计数的作用下,电阻分压通过与参考电压相比较可以得到不同的高电平数,不仅可以区分地沟油与正常食用油,还可以得出正常油掺入地沟油的质量分数。在检测计核心电路设计方面,由于采用CMOS工艺设计,所以可以实现低面积和低功耗的检测。
文摘介绍了一种半导体照明光源恒流驱动芯片的设计。该芯片采用0.6μm CM O S标准工艺制造,包含有大功率M O SFET、带隙基准源电路、输出缓冲电路和取样反馈控制电路几个主要功能模块,在标准工艺线上实现了功率器件与控制电路的单片集成。该芯片可为工作电压为3.5 V,工作电流为350 mA的单个半导体照明光源提供恒定的驱动电流。在5 V电源电压有10%跳变的情况下,半导体照明光源的驱动电流的变化可被控制在1.71%以内,而距离光源10 cm处的照度变化仅为1.28%。当环境温度由25°C升高至85°C时,半导体照明光源的驱动电流减小1.14%,而距离光源10 cm处的照度仅减小1.09%。该恒流驱动芯片的电源效率可达63.4%。
文摘研究了不同沟道和栅氧化层厚度的n-M O S器件在衬底正偏压的VG=VD/2热载流子应力下,由于衬底正偏压的不同对器件线性漏电流退化的影响。实验发现衬底正偏压对沟长0.135μm,栅氧化层厚度2.5 nm器件的线性漏电流退化的影响比沟长0.25μm,栅氧化层厚度5 nm器件更强。分析结果表明,随着器件沟长继续缩短和栅氧化层减薄,由于衬底正偏置导致的阈值电压减小、增强的寄生NPN晶体管效应、沟道热电子与碰撞电离空穴复合所产生的高能光子以及热电子直接隧穿超薄栅氧化层产生的高能光子可能打断S i-S iO2界面的弱键产生界面陷阱,加速n-M O S器件线性漏电流的退化。