期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
双最小二乘支持向量数据描述 被引量:1
1
作者 张仙伟 邢佳瑶 《西安科技大学学报》 CAS 北大核心 2021年第3期559-565,共7页
为了提高标准支持向量数据描述的分类精度和分类时间,构造双最小二乘支持向量数据描述,并对比分析在不同样本集上的分类性能以及分类性能随参数和样本规模的变化。在训练阶段,双最小二乘支持向量数据描述应用等式约束代替标准算法中的... 为了提高标准支持向量数据描述的分类精度和分类时间,构造双最小二乘支持向量数据描述,并对比分析在不同样本集上的分类性能以及分类性能随参数和样本规模的变化。在训练阶段,双最小二乘支持向量数据描述应用等式约束代替标准算法中的不等式约束,通过求解线性方程组而非凸二次规划得到正负2类样本的超球形描述边界,进而设计一个分段函数作为分类规则;在测试阶段,计算待测样本到正负2类样本的最小包围超球球心的距离,并根据距离的最小值选取相应的分类规则。数值试验结果表明双最小二乘支持向量数据描述的有效性和优越性。在基准数据集上,双最小二乘支持向量数据描述的分类精度比标准算法高1.68%,而分类时间仅为标准算法的16.51%;在正态分布数据集上,双最小二乘支持向量数据描述具有比标准算法高的分类精度和短的分类时间,而分类时间上的优势在大规模样本集上更加明显,其在2000个和10000个样本集上的分类时间为标准算法的78.06%和18.69%。 展开更多
关键词 双最小二乘支持向量数据描述 等式约束 线性方程组 超球形边界 分段分类规则 最小距离
在线阅读 下载PDF
带高斯核的支持向量数据描述问题的高效积极集法
2
作者 张奇业 曾心蕊 《计算机应用》 CSCD 北大核心 2024年第12期3808-3814,共7页
针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子... 针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子问题;其次,通过矩阵操作实现积极集的更新,每次更新计算只与当前支持向量及单个样本点有关,从而极大地降低计算量;另外,由于ASM-SVDD算法是传统积极集法的一种变体,应用积极集法理论得到该算法的有限终止性;最后,基于仿真和真实数据集,验证ASM-SVDD算法性能。结果表明,随着训练轮次的增加,ASM-SVDD算法可以有效提升模型性能。与求解SVDD问题的快速增量算法FISVDD (Fast Incremental SVDD)相比,ASM-SVDD算法在典型的低维高样本数据集shuttle上训练得到的目标函数值可减小25.9%,对支持向量的识别能力可提高10.0%。同时,ASM-SVDD算法在不同数据集上的F1分数相较于FISVDD算法均有提高,在超大规模数据集criteo上提高量可达0.07%。可见,ASM-SVDD算法在检测异常值的同时,训练得到的超球体更稳定,且对测试样本的判断准确率也更高,适用于大规模数据场景下的异常值检测。 展开更多
关键词 支持向量数据描述 次规划 积极集法 异常值检测 有限终止性
在线阅读 下载PDF
基于最小二乘支持向量机预测器的传感器故障检测与数据恢复(英文) 被引量:24
3
作者 冯志刚 信太克规 王祈 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第2期193-197,共5页
本文介绍了最小二乘支持向量机(LS-SVM)回归的基本原理,提出了一种基于LS-SVM回归的时间序列预测器,并将其用于传感器的故障检测和数据恢复。论述了LS-SVM预测器的实现方法和步骤,并且将其应用于压力传感器的故障检测和数据恢复,同线性... 本文介绍了最小二乘支持向量机(LS-SVM)回归的基本原理,提出了一种基于LS-SVM回归的时间序列预测器,并将其用于传感器的故障检测和数据恢复。论述了LS-SVM预测器的实现方法和步骤,并且将其应用于压力传感器的故障检测和数据恢复,同线性神经网络预测器、RBF神经网络预测器和BP神经网络预测器的比较结果表明,LS-SVM预测器具有更高的预测精度,更好的外推能力,计算效率最高,因此,LS-SVM预测器是传感器故障检测和短期数据恢复的一种有效方法。 展开更多
关键词 数据恢复 神经网络预测器 传感器故障检测 最小乘支持向量
在线阅读 下载PDF
双加权最小二乘支持向量机的短期风速预测 被引量:11
4
作者 潘学萍 史宇伟 张弛 《电力系统及其自动化学报》 CSCD 北大核心 2014年第1期13-17,66,共6页
提出了双加权最小二乘支持向量机的短期风速预测方法。考虑到离预测点越远的历史风速数据对预测值的影响越弱,对训练样本中输入向量数据进行第1次加权,以体现不同元素对预测影响的差异。同时为区分训练样本的差异性,降低异常样本的干扰... 提出了双加权最小二乘支持向量机的短期风速预测方法。考虑到离预测点越远的历史风速数据对预测值的影响越弱,对训练样本中输入向量数据进行第1次加权,以体现不同元素对预测影响的差异。同时为区分训练样本的差异性,降低异常样本的干扰,对训练样本进行第2次加权。对双加权后的训练样本,采用加权最小二乘支持向量机模型进行预测,降低了对异常点的敏感度,实现了对不同样本的区别对待。根据某实测风速数据进行了风速预测,结果表明,所提方法能提高风速预测精度。 展开更多
关键词 风速预测 加权方法 加权最小乘支持向量 短期预测
在线阅读 下载PDF
基于双近邻模式和最小二乘支持向量机的SAR景象匹配区选择 被引量:5
5
作者 程华 田金文 《宇航学报》 EI CAS CSCD 北大核心 2009年第4期1626-1632,共7页
通过对景象匹配过程的分析,从模式识别的角度阐述了误匹配产生的原因。从避免误匹配的角度定义了双近邻度、最小距离以反映SAR景象的独特性和匹配的准确性,并结合反映地面景物稳定性的边缘密度,构建反映SAR景象适配性的分类特征向量。... 通过对景象匹配过程的分析,从模式识别的角度阐述了误匹配产生的原因。从避免误匹配的角度定义了双近邻度、最小距离以反映SAR景象的独特性和匹配的准确性,并结合反映地面景物稳定性的边缘密度,构建反映SAR景象适配性的分类特征向量。基于该分类特征向量,利用最小二乘支持向量机将SAR景象基准图子图划分为匹配正确的子图和匹配错误的子图,并由匹配正确的子图类构成SAR景象适配区。试验结果表明,提出的方法能够有效地规划出所需的SAR景象匹配区。 展开更多
关键词 匹配区选择 近邻模式 最小乘支持向量 SAR 景象匹配
在线阅读 下载PDF
基于最小二乘支持向量机的测控数据融合 被引量:2
6
作者 苏思 姜礼平 邹明 《火力与指挥控制》 CSCD 北大核心 2011年第3期98-100,114,共4页
提出利用最小二乘支持向量机方法研究GPS和雷达系统对机动目标联合测量中的数据融合问题,GPS数据经过时间配准处理与雷达数据达到时间同步,经过空间配准和坐标系变换,进行卡尔曼滤波,以滤波估计坐标值作为支持向量机的输入,以最小二乘... 提出利用最小二乘支持向量机方法研究GPS和雷达系统对机动目标联合测量中的数据融合问题,GPS数据经过时间配准处理与雷达数据达到时间同步,经过空间配准和坐标系变换,进行卡尔曼滤波,以滤波估计坐标值作为支持向量机的输入,以最小二乘支持向量机为同步融合中心,输出为目标轨迹的融合估计值,仿真结果表明这种方案可以达到比融合前数据更贴近真实值的效果。 展开更多
关键词 最小乘支持向量 测控 数据融合
在线阅读 下载PDF
数据预处理对最小二乘支持向量机预报钟差的影响 被引量:1
7
作者 雷雨 赵丹宁 《导航定位学报》 2014年第1期15-19,共5页
分析在基于最小二乘支持向量机的卫星钟差预报中样本数据预处理的必要性,列举了归一化、标准化和相邻历元一次差3种数据预处理方法。然后结合实例,对比分析不同数据预处理方法对基于最小二乘支持向量机的钟差预报精度的影响,得出不同方... 分析在基于最小二乘支持向量机的卫星钟差预报中样本数据预处理的必要性,列举了归一化、标准化和相邻历元一次差3种数据预处理方法。然后结合实例,对比分析不同数据预处理方法对基于最小二乘支持向量机的钟差预报精度的影响,得出不同方法对钟差预报精度的影响不同,其中,基于一次差方法的预报精度最高。最后,将基于一次差方法的最小二乘支持向量机预报模型与常用的二次多项式模型和灰色系统模型进行比较,结果表明,最小二乘支持向量机模型的预报效果明显优于两种常规模型。 展开更多
关键词 卫星钟差预报 最小乘支持向量 数据预处理 精度分析
在线阅读 下载PDF
基于蝙蝠算法优化最小二乘双支持向量机的变压器故障诊断 被引量:60
8
作者 陈欢 彭辉 +2 位作者 舒乃秋 张开轩 魏岸 《高电压技术》 EI CAS CSCD 北大核心 2018年第11期3664-3671,共8页
为了提高变压器的故障诊断精度,提出了一种基于蝙蝠算法(BA)优化最小二乘双支持向量机(LS-TSVM)的变压器故障诊断方法。该方法针对变压器故障诊断过程中的多分类问题,通过计算类间相异度矩阵自下而上构建哈夫曼树,结合LS-TSVM建立... 为了提高变压器的故障诊断精度,提出了一种基于蝙蝠算法(BA)优化最小二乘双支持向量机(LS-TSVM)的变压器故障诊断方法。该方法针对变压器故障诊断过程中的多分类问题,通过计算类间相异度矩阵自下而上构建哈夫曼树,结合LS-TSVM建立了多类分类故障诊断模型,然后采用蝙蝠算法对模型中LS-TSVM分类器的参数进行优化。利用该方法对变压器进行故障诊断,实例仿真结果表明:与粒子群优化支持向量机(PSO-SVM)方法相比,所提方法不仅训练时间显著缩短,而且故障诊断精度更高,对于高温过热、低能放电故障的诊断精度均明显高于PSO-SVM方法。仿真结果说明所提方法在变压器故障诊断中具有较高的优越性。 展开更多
关键词 变压器 油中溶解气体分析 最小二乘支持向量 哈夫曼树 蝙蝠算法 故障诊断
在线阅读 下载PDF
最小二乘双支持向量回归机 被引量:6
9
作者 卢振兴 杨志霞 高新豫 《计算机工程与应用》 CSCD 2014年第23期140-144,162,共6页
提出了一个最小二乘双支持向量回归机,它是在双支持向量回归机基础之上建立的,打破了标准支持向量回归机利用两条平行超平面构造ε带的思想。事实上,它是利用两条不一定平行的超平面构造ε带,每条超平面确定一个半ε-带,从而得到最终的... 提出了一个最小二乘双支持向量回归机,它是在双支持向量回归机基础之上建立的,打破了标准支持向量回归机利用两条平行超平面构造ε带的思想。事实上,它是利用两条不一定平行的超平面构造ε带,每条超平面确定一个半ε-带,从而得到最终的回归函数,这使该回归函数更符合数据本身的分布情况,回归算法有更好的推广能力。另外,最小二乘双支持向量机只需求解两个较小规模的线性方程组就能得到最后的回归函数,其计算复杂度相对较低。数值实验也表明该回归算法在推广能力和计算效率上有一定的优势。 展开更多
关键词 回归问题 支持向量回归机 支持向量回归机 最小二乘支持向量回归机
在线阅读 下载PDF
基于最小二乘支持向量机退化数据的可靠性评估 被引量:2
10
作者 冯帅 冯金富 +2 位作者 王聪 齐铎 李永利 《机械强度》 CAS CSCD 北大核心 2016年第3期509-514,共6页
传统的可靠性评估依赖于产品的失效数据,需要大量的统计数据和试验样本,试验周期长、费用高。针对这一问题,提出了在不需要失效数据的前提下,通过性能退化数据进行可靠性评估的方法。方法建立了基于最小二乘支持向量机的性能退化模型,... 传统的可靠性评估依赖于产品的失效数据,需要大量的统计数据和试验样本,试验周期长、费用高。针对这一问题,提出了在不需要失效数据的前提下,通过性能退化数据进行可靠性评估的方法。方法建立了基于最小二乘支持向量机的性能退化模型,并用改进的NSGA-Ⅱ算法对模型参数进行了寻优,给出了优化结果和可靠性评估过程。最后通过实例验证了该方法的有效性和可行性。 展开更多
关键词 可靠性评估 失效数据 最小乘支持向量 参数寻优
在线阅读 下载PDF
基于最小二乘支持向量机和证据理论的交通数据融合 被引量:4
11
作者 郭璘 方廷健 +1 位作者 叶加圣 孙丙宇 《中国科学技术大学学报》 CAS CSCD 北大核心 2007年第12期1500-1504,共5页
针对基于浮动车辆数据(floating car data,FCD)的城市道路交通信息采集系统存在的问题,提出一种基于最小二乘支持向量机(LS-SVM)和证据理论的数据融合方法,通过融合地感线圈采集的交通流量信息,提高FCD系统交通速度信息采集的准确性.利... 针对基于浮动车辆数据(floating car data,FCD)的城市道路交通信息采集系统存在的问题,提出一种基于最小二乘支持向量机(LS-SVM)和证据理论的数据融合方法,通过融合地感线圈采集的交通流量信息,提高FCD系统交通速度信息采集的准确性.利用LS-SVM回归得到速度-流量关系曲线的临界速度参数,再根据历史数据库用统计方法计算出流量-速度关联规则的可信度矩阵,在得到这些经验知识的基础上,定义了两种证据源的基本概率分配函数.最后,通过D-S证据理论对两种证据源进行数据融合,获得融合后的速度信息.实地跑车实验结果论证了融合算法的有效性和可靠性. 展开更多
关键词 数据融合 最小乘支持向量 证据理论 关联矩阵 浮动车辆数据 地感线圈
在线阅读 下载PDF
基于最小二乘支持向量机的AIS数据修复方法 被引量:13
12
作者 王永明 刘兴龙 桑凌志 《上海海事大学学报》 北大核心 2018年第4期82-89,共8页
针对当前船舶自动识别系统(automatic identification system,AIS)数据存在大量错误和缺失的问题,通过匹配AIS数据丢失时间制定完备AIS数据库,采用改进的Hausdorff距离公式融合轨迹空间相似度与船舶航行速度相似度,采用相似轨迹作为最... 针对当前船舶自动识别系统(automatic identification system,AIS)数据存在大量错误和缺失的问题,通过匹配AIS数据丢失时间制定完备AIS数据库,采用改进的Hausdorff距离公式融合轨迹空间相似度与船舶航行速度相似度,采用相似轨迹作为最小二乘支持向量机(least squares support vector machine,LSSVM)算法的输入样本,通过数据训练得到的回归模型对AIS数据进行修复。采用实际数据进行验证。结果显示,本文提出的基于粒子群优化(particle swarm optimization,PSO)的LSSVM算法能够准确还原AIS数据。结果可以提高AIS数据的连续性和完整性。 展开更多
关键词 AIS数据 数据修复 最小乘支持向量机(LSSVM) 粒子群优化(PSO)算法
在线阅读 下载PDF
最小二乘支持向量机的点云数据孔洞修补算法 被引量:11
13
作者 杨永强 李淑红 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第3期692-696,共5页
为了获得理想的点云数据孔洞修补结果,针对当前算法存在的缺陷,提出一种基于最小二乘支持向量机(LSSVM)的点云数据孔洞修补算法.首先根据散乱点云边界估计孔洞修补范围,然后根据孔洞及周围点的信息,采用最小二乘支持向量机建立一个曲面... 为了获得理想的点云数据孔洞修补结果,针对当前算法存在的缺陷,提出一种基于最小二乘支持向量机(LSSVM)的点云数据孔洞修补算法.首先根据散乱点云边界估计孔洞修补范围,然后根据孔洞及周围点的信息,采用最小二乘支持向量机建立一个曲面,并对曲面点云数据的孔洞进行修补,最后采用C++语言编程实现仿真实验.实验结果表明,最小二乘支持向量机能有效修补各种复杂的孔洞,且修补效果优于其他算法. 展开更多
关键词 三维成像 曲面重建 点云数据 孔洞修补 最小乘支持向量
在线阅读 下载PDF
稀疏结构化最小二乘双支持向量回归机 被引量:3
14
作者 闫丽萍 马家军 陈文兴 《计算机工程与应用》 CSCD 北大核心 2019年第3期10-14,45,共6页
最小二乘双支持向量回归机(LSTSVR)通过引入最小二乘损失将双支持向量回归机(TSVR)中的二次规划问题简化为两个线性方程组的求解,从而大大减少了训练时间。然而,LSTSVR最小化基于最小二乘损失的经验风险易导致以下不足:(1)"过学习&... 最小二乘双支持向量回归机(LSTSVR)通过引入最小二乘损失将双支持向量回归机(TSVR)中的二次规划问题简化为两个线性方程组的求解,从而大大减少了训练时间。然而,LSTSVR最小化基于最小二乘损失的经验风险易导致以下不足:(1)"过学习"问题;(2)模型的解缺乏稀疏性,难以训练大规模数据。针对(1),提出结构化最小二乘双支持向量回归机(S-LSTSVR)以提升模型的泛化能力;针对(2),进一步利用不完全Choesky分解对核矩阵进行低秩近似,给出求解S-LSTSVR的稀疏算法SS-LSTSVR,使模型能有效地训练大规模数据。人工数据和UCI数据集中的实验证明SS-LSTSVR不但可以避免"过学习",而且能够高效地解决大规模训练问题。 展开更多
关键词 最小二乘支持向量回归 结构风险最小 稀疏性 不完全Choesky分解 大规模
在线阅读 下载PDF
回归型模糊最小二乘支持向量机 被引量:11
15
作者 吴青 刘三阳 杜喆 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第5期773-778,共6页
为了克服最小二乘支持向量机对于孤立点过分敏感的问题,将模糊隶属度概念引入最小二乘支持向量机中,提出了基于支持向量域描述的模糊最小二乘支持向量回归机.该方法先对样本进行数据域描述得到一个包含该组数据的最小半径的超球,再根据... 为了克服最小二乘支持向量机对于孤立点过分敏感的问题,将模糊隶属度概念引入最小二乘支持向量机中,提出了基于支持向量域描述的模糊最小二乘支持向量回归机.该方法先对样本进行数据域描述得到一个包含该组数据的最小半径的超球,再根据特征空间中样本与超球球心的距离确定它们的隶属度,减少了奇异点(噪声)的影响;把所要求解的约束凸二次优化问题转化为正定线性方程组,并采用快速Cholesky分解的方法求解该方程组.实验结果表明该方法在不牺牲训练速度的前提下,比支持向量机和最小二乘支持向量机具有更高的预测精度. 展开更多
关键词 最小乘支持向量 模糊隶属度 数据描述
在线阅读 下载PDF
基于最小二乘支持向量机的黄土湿陷性预测挖掘 被引量:8
16
作者 井彦林 仵彦卿 +2 位作者 林杜军 李晓光 张志权 《岩土力学》 EI CAS CSCD 北大核心 2010年第6期1865-1870,共6页
运用数据挖掘技术进行了黄土湿陷性的预测挖掘,挖掘模型采用最小二乘支持向量机。建模过程中用主成份分析法进行数据的预处理,以剔除指标间的相关性,消除多指标信息冗余对挖掘模型的影响,并引入粒子群优化算法进行模型反演分析,确定最... 运用数据挖掘技术进行了黄土湿陷性的预测挖掘,挖掘模型采用最小二乘支持向量机。建模过程中用主成份分析法进行数据的预处理,以剔除指标间的相关性,消除多指标信息冗余对挖掘模型的影响,并引入粒子群优化算法进行模型反演分析,确定最优参数。针对实际工程数据进行的预测挖掘表明:黄土的电阻率、剪切波速与土的结构特性、含水率、密度等指标密切相关,可较为全面地反映影响黄土湿陷性的因素;以电阻率、剪切波速及土层埋深作为模型的预测变量就可定量预测黄土的湿陷性;用所建模型和预测变量来预测黄土的湿陷性是可行的。 展开更多
关键词 黄土 湿陷性预测 数据挖掘 最小乘支持向量
在线阅读 下载PDF
最小二乘支持向量机可视化燃烧/排放关联特性的研究 被引量:6
17
作者 穆怀萍 刘石 +2 位作者 李志宏 郭建民 姜凡 《中国电机工程学报》 EI CSCD 北大核心 2006年第12期161-165,共5页
一种基于光学原理的燃烧火焰/温度场测量装置,用以获得实时的炉内燃烧信息,以便实施洁净煤燃烧技术。文中以可视化火焰检测系统对电站锅炉燃烧火焰和温度场进行监测的研究。通过测量,得到了数值化的火焰/温度场信息,对燃烧火焰的图像进... 一种基于光学原理的燃烧火焰/温度场测量装置,用以获得实时的炉内燃烧信息,以便实施洁净煤燃烧技术。文中以可视化火焰检测系统对电站锅炉燃烧火焰和温度场进行监测的研究。通过测量,得到了数值化的火焰/温度场信息,对燃烧火焰的图像进行了分析,提取了不同单色波波长下的火焰图像的平均灰度、方差、熵、火焰丰度、能量、最高灰度等特征量,计算得到了温度分布。为了建立锅炉排放与火焰参数及燃烧温度的关系,利用最小二乘支持向量机原理,以火焰参数为主要判据,将得到的表征燃烧的特征量作为最小二乘支持向量机的输入,对NOx排放量进行了预估。结果表明,估计值与实测值具有一致性。 展开更多
关键词 色法 图像处理 最小乘支持向量 火焰可视化 NOX排放
在线阅读 下载PDF
多输入多输出非线性系统的最小二乘支持向量机广义逆控制 被引量:6
18
作者 刘国海 张懿 +1 位作者 魏海峰 赵文祥 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第4期492-496,共5页
针对神经网络逆控制存在的不足,对一类模型未知且某些状态量较难测得的多输入多输出(MIMO)非线性系统,在状态软测量函数存在的前提下,提出一种最小二乘支持向量机(LSSVM)广义逆辨识控制策略.通过广义逆将原被控系统转化为伪线性复合系统... 针对神经网络逆控制存在的不足,对一类模型未知且某些状态量较难测得的多输入多输出(MIMO)非线性系统,在状态软测量函数存在的前提下,提出一种最小二乘支持向量机(LSSVM)广义逆辨识控制策略.通过广义逆将原被控系统转化为伪线性复合系统,并可使其极点任意配置,采用LSSVM代替神经网络拟合广义逆系统中的静态非线性映射.将系统的状态量辨识与LSSVM逆模型辨识结合,通过LSSVM训练拟合同时实现软测量功能.最后以双电机变频调速系统为对象,采用该控制策略进行仿真研究,结果验证了本文算法的有效性. 展开更多
关键词 非线性系统 广义逆 辨识 最小乘支持向量 电机变频调速系统
在线阅读 下载PDF
一种适于在线学习的增量支持向量数据描述方法 被引量:5
19
作者 冯国瑜 肖怀铁 +1 位作者 付强 任国磊 《信号处理》 CSCD 北大核心 2012年第2期186-192,共7页
本文针对支持向量数据描述(Support Vector Data Description,SVDD)中的在线学习问题,提出了一种增量支持向量数据描述(Incremental Support Vector Data Description,ISVDD)方法。首先,理论明确了增量学习机理在SVDD中的可行性,并深入... 本文针对支持向量数据描述(Support Vector Data Description,SVDD)中的在线学习问题,提出了一种增量支持向量数据描述(Incremental Support Vector Data Description,ISVDD)方法。首先,理论明确了增量学习机理在SVDD中的可行性,并深入分析了在线新增样本与已有样本集合的集合划分问题;同时从理论上给出了ISVDD中样本系数变化的依据,推导了ISVDD的理论过程。其次,为了提高理论完备性与应用可靠性,在六种条件下实现了样本属性之间的迁移,获得各个样本系数的变化量。ISVDD方法不仅继承了标准SVDD的优点,能够获得和标准SVDD同样的分类性能,并且显著减少了在线增量样本的训练时间,缓解了数据优化中对内存量的巨大需求。实验结果证明了本文方法的有效性和正确性。 展开更多
关键词 支持向量数据描述 增量学习 次规划 样本迁移
在线阅读 下载PDF
基于改进最小二乘支持向量机的惯性测量组件故障在线检测方法 被引量:3
20
作者 杨辉 赵剡 +1 位作者 滕冲 李敏 《中国惯性技术学报》 EI CSCD 北大核心 2014年第3期409-415,共7页
为提高惯导系统工作的可靠性和导航性能,对其惯性测量组件的故障模式和检测模型进行了分析。针对最小二乘支持向量机(LS-SVM)回归算法做了两点改进,具体方法是先对输入样本观察窗平移更新的每个样本数据进行异常点滤波判断并用牛顿插值... 为提高惯导系统工作的可靠性和导航性能,对其惯性测量组件的故障模式和检测模型进行了分析。针对最小二乘支持向量机(LS-SVM)回归算法做了两点改进,具体方法是先对输入样本观察窗平移更新的每个样本数据进行异常点滤波判断并用牛顿插值法进行处理,接着通过对在线LS-SVM回归过程的研究,提出了一种递推求解的快速算法,将惯性测量组件的输出量、舵偏角改变量并辅以环境因素作为观测样本序列,应用该算法来提高模型检测的准确性和时效性。最后对惯性测量组件无故障和出现卡滞、恒偏差时的故障模式进行了仿真实验,结果表明,与应用LS-SVM、SVM和BP神经网络算法相比,提出的惯性测量组件故障在线检测方法具有较强的鲁棒性和较快的速度。 展开更多
关键词 惯性测量组件 在线最小乘支持向量 动态数据 鲁棒性 故障预测
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部