基于代数重构思想,发展了一种新的双界面函数重构方法,并采用双正弦函数构造了双正弦界面重构方法(double sine interface capturing,DSINC).为验证不同界面函数对界面捕捉效果的影响,用数值方法求解了可压缩五方程模型,其中对流项的离...基于代数重构思想,发展了一种新的双界面函数重构方法,并采用双正弦函数构造了双正弦界面重构方法(double sine interface capturing,DSINC).为验证不同界面函数对界面捕捉效果的影响,用数值方法求解了可压缩五方程模型,其中对流项的离散采用五阶WENO(weighted essentially non-oscillatory method)格式,时间积分采用三阶Runge--Kutta方法,通量计算分别考虑了HLL和HLLC方法,而状态方程采用Mie-Gr¨uneisen状态方程.在数值计算中,在界面附近,采用DSINC来获得体积分数的重构,而在远离界面的区域采用WENO格式来获得高阶插值状态.相比采用单界面函数的方法,如双曲正切界面重构方法(tangent of hyperbola for interface capturing,THINC),DSINC方法同样具有界面重构算法简单,在程序中添加方便等特点,两者区别在于,DSINC方法在重构过程中未知函数更易于求解,而无需求解复杂的非线性超越方程,这就使其具有易于向多维扩展的能力.一些典型的两相流动问题,如圆形水柱对流问题,两相三波点问题和激波-界面不稳定性问题等被用作不同界面函数对界面捕捉效果的影响对比.对比分析发现,DSINC与THINC在界面捕捉效果上大致保持一致,并在计算中表现出了较好的稳定性.双界面函数重构思想可以为多相流动界面的代数重构提供了一种新的思路.展开更多
双曲正切函数(Tanh)在神经网络中经常被用作激活函数,而其非线性的特点导致难以用硬件电路直接计算实现.为了快速有效的实现Tanh函数,提出采用DCORDIC(Differential Coordinate Rotation Digital Computer)算法在不同模式下实现双曲正...双曲正切函数(Tanh)在神经网络中经常被用作激活函数,而其非线性的特点导致难以用硬件电路直接计算实现.为了快速有效的实现Tanh函数,提出采用DCORDIC(Differential Coordinate Rotation Digital Computer)算法在不同模式下实现双曲正弦、双曲余弦函数和除法运算,并在设计中增加选择模块扩大输入数据的范围,最终设计实现的Tanh计算核具有超长流水线,当迭代次数为13时,计算误差在2-8以内.与现有的硬件实现方式相比,本文的实现方式具有更小的误差、更高的运算速度和更大的吞吐率.展开更多
文摘基于代数重构思想,发展了一种新的双界面函数重构方法,并采用双正弦函数构造了双正弦界面重构方法(double sine interface capturing,DSINC).为验证不同界面函数对界面捕捉效果的影响,用数值方法求解了可压缩五方程模型,其中对流项的离散采用五阶WENO(weighted essentially non-oscillatory method)格式,时间积分采用三阶Runge--Kutta方法,通量计算分别考虑了HLL和HLLC方法,而状态方程采用Mie-Gr¨uneisen状态方程.在数值计算中,在界面附近,采用DSINC来获得体积分数的重构,而在远离界面的区域采用WENO格式来获得高阶插值状态.相比采用单界面函数的方法,如双曲正切界面重构方法(tangent of hyperbola for interface capturing,THINC),DSINC方法同样具有界面重构算法简单,在程序中添加方便等特点,两者区别在于,DSINC方法在重构过程中未知函数更易于求解,而无需求解复杂的非线性超越方程,这就使其具有易于向多维扩展的能力.一些典型的两相流动问题,如圆形水柱对流问题,两相三波点问题和激波-界面不稳定性问题等被用作不同界面函数对界面捕捉效果的影响对比.对比分析发现,DSINC与THINC在界面捕捉效果上大致保持一致,并在计算中表现出了较好的稳定性.双界面函数重构思想可以为多相流动界面的代数重构提供了一种新的思路.
文摘双曲正切函数(Tanh)在神经网络中经常被用作激活函数,而其非线性的特点导致难以用硬件电路直接计算实现.为了快速有效的实现Tanh函数,提出采用DCORDIC(Differential Coordinate Rotation Digital Computer)算法在不同模式下实现双曲正弦、双曲余弦函数和除法运算,并在设计中增加选择模块扩大输入数据的范围,最终设计实现的Tanh计算核具有超长流水线,当迭代次数为13时,计算误差在2-8以内.与现有的硬件实现方式相比,本文的实现方式具有更小的误差、更高的运算速度和更大的吞吐率.