In this article, the author considers the Cauchy problem for quasilinear non-strict ly hyperbolic systems and obtain a blow-up result for the C1 solution to the Cauchy problem with weaker decaying initial data.
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen...In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.展开更多
文摘In this article, the author considers the Cauchy problem for quasilinear non-strict ly hyperbolic systems and obtain a blow-up result for the C1 solution to the Cauchy problem with weaker decaying initial data.
基金Supported by the Natural Science Foundation of China(10471086)Supported by the Science Research Foundation of Department of Education of Hunan Province(07C164)
文摘In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.