In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation o...In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation of anatomic diffusion layer with thickness of about 17μm at the interface during the ARB under three creep loadingconditions namely 30 MPa at 225℃,35 MPa at 225℃,and 35 MPa at 275℃.An generated intermetallic compoundresulted in a 40%increase of interface thickness near Al.The stress level decreased by 13%at constant temperature withno signi fi cant effect on the interface thickness,and the creep failure time declined by 44%.It was observed that atconstant temperatures,the second slope of the creep curve reached to 39%with increasing stress level,then,it dropped to2%with a little temperature rising.After creep test under 35 MPa at 275℃,the sample displays the presence of 60%Aland 40%Cu,containing brittle Al_(2)Cu intermetallic compound at the interface.Applied temperature and stress had effecton the creep properties,specially increasing the slope of creep curves with higher stresses.展开更多
Effect of holding time on microstructural developments and transformation of precipitates formed at the interface during transient liquid-phase bonding of a duplex stainless steel using a Ni-based amorphous insert all...Effect of holding time on microstructural developments and transformation of precipitates formed at the interface during transient liquid-phase bonding of a duplex stainless steel using a Ni-based amorphous insert alloy was studied. The experimental results reveal that the microstructure of the adjacent base metal varies clearly as a function of holding time. The migration of Cr and Ni elements and the → transformation seem to play relevant roles in this microstructure evolution. The scanning electron microscopy (SEM) and electron prob X-ray microanalysis (EPMA) results indicate the transformation of BN→BN and (N, Mo) boride→BN at the interface with the holding time of 60-1 800 s. N content changes with holding time increasing at locations at the interface might be a controlling factor contributing to this transformation.展开更多
文摘In the present study,microstructural evolution,mechanical and creep properties of Al/SiC/Cu composite stripsfabricated via accumulative roll bonding(ARB)process were studied.The obtained results showed the formation of anatomic diffusion layer with thickness of about 17μm at the interface during the ARB under three creep loadingconditions namely 30 MPa at 225℃,35 MPa at 225℃,and 35 MPa at 275℃.An generated intermetallic compoundresulted in a 40%increase of interface thickness near Al.The stress level decreased by 13%at constant temperature withno signi fi cant effect on the interface thickness,and the creep failure time declined by 44%.It was observed that atconstant temperatures,the second slope of the creep curve reached to 39%with increasing stress level,then,it dropped to2%with a little temperature rising.After creep test under 35 MPa at 275℃,the sample displays the presence of 60%Aland 40%Cu,containing brittle Al_(2)Cu intermetallic compound at the interface.Applied temperature and stress had effecton the creep properties,specially increasing the slope of creep curves with higher stresses.
基金Project(51205428) supported by the National Natural Science Foundation of ChinaProject(CDJRC10130011) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(2010-0001-222) supported by NCRC (National Core Research Center) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology,Korea
文摘Effect of holding time on microstructural developments and transformation of precipitates formed at the interface during transient liquid-phase bonding of a duplex stainless steel using a Ni-based amorphous insert alloy was studied. The experimental results reveal that the microstructure of the adjacent base metal varies clearly as a function of holding time. The migration of Cr and Ni elements and the → transformation seem to play relevant roles in this microstructure evolution. The scanning electron microscopy (SEM) and electron prob X-ray microanalysis (EPMA) results indicate the transformation of BN→BN and (N, Mo) boride→BN at the interface with the holding time of 60-1 800 s. N content changes with holding time increasing at locations at the interface might be a controlling factor contributing to this transformation.