为了解决增程式电动轻卡辅助动力单元(auxiliary power units,APU)和动力电池之间能量的合理分配问题,在Simulink中建立面向控制的仿真模型,并提出一种基于双延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,T...为了解决增程式电动轻卡辅助动力单元(auxiliary power units,APU)和动力电池之间能量的合理分配问题,在Simulink中建立面向控制的仿真模型,并提出一种基于双延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,TD3)算法的实时能量管理策略,以发动机燃油消耗量、电池荷电状态(state of charge,SOC)变化等为优化目标,在世界轻型车辆测试程序(world light vehicle test procedure,WLTP)中对深度强化学习智能体进行训练。仿真结果表明,利用不同工况验证了基于TD3算法的能量管理策略(energy management strategy,EMS)具有较好的稳定性和适应性;TD3算法实现对发动机转速和转矩连续控制,使得输出功率更加平滑。将基于TD3算法的EMS与基于传统深度Q网络(deep Q-network,DQN)算法和深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法进行对比分析,结果表明:基于TD3算法的EMS燃油经济性分别相比基于DQN算法和DDPG算法提高了12.35%和0.67%,达到基于动态规划(dynamic programming,DP)算法的94.85%,收敛速度相比基于DQN算法和DDPG算法分别提高了40.00%和47.60%。展开更多
无人机辅助通信系统是未来无线通信系统的重要组成部分。为进一步提高无人机辅助通信系统中时频资源的利用率,本文研究了一种基于非正交多址技术的无人机辅助通信架构,并提出了一种基于双延迟深度确定性策略梯度的TD3-TOPATM(twin delay...无人机辅助通信系统是未来无线通信系统的重要组成部分。为进一步提高无人机辅助通信系统中时频资源的利用率,本文研究了一种基于非正交多址技术的无人机辅助通信架构,并提出了一种基于双延迟深度确定性策略梯度的TD3-TOPATM(twin delayedtrajectory optimization and power allocation for total throughput maximization)算法,以最大化总吞吐量为目标,在满足最大功率约束、空间约束、最大飞行速度和服务质量(quality of service,QoS)约束的情况下,联合优化无人机的功率分配策略和3D轨迹。仿真实验分析结果表明,与随机算法相比,TD3-TOPATM算法能够实现98%的性能增益;与基于DQN(deep Q-network)的轨迹优化与资源分配算法相比,TD3-TOPATM算法获得的性能增益为19.4%;与基于深度确定性策略梯度的轨迹优化与资源分配算法相比,TD3-TOPATM算法得到的总吞吐量增加了9.7%;与基于正交多址技术的无人机辅助通信方案相比,基于非正交多址技术的无人机辅助通信方案实现了55%的性能增益。展开更多
文摘无人机辅助通信系统是未来无线通信系统的重要组成部分。为进一步提高无人机辅助通信系统中时频资源的利用率,本文研究了一种基于非正交多址技术的无人机辅助通信架构,并提出了一种基于双延迟深度确定性策略梯度的TD3-TOPATM(twin delayedtrajectory optimization and power allocation for total throughput maximization)算法,以最大化总吞吐量为目标,在满足最大功率约束、空间约束、最大飞行速度和服务质量(quality of service,QoS)约束的情况下,联合优化无人机的功率分配策略和3D轨迹。仿真实验分析结果表明,与随机算法相比,TD3-TOPATM算法能够实现98%的性能增益;与基于DQN(deep Q-network)的轨迹优化与资源分配算法相比,TD3-TOPATM算法获得的性能增益为19.4%;与基于深度确定性策略梯度的轨迹优化与资源分配算法相比,TD3-TOPATM算法得到的总吞吐量增加了9.7%;与基于正交多址技术的无人机辅助通信方案相比,基于非正交多址技术的无人机辅助通信方案实现了55%的性能增益。