期刊文献+
共找到826篇文章
< 1 2 42 >
每页显示 20 50 100
混合颜色特征下番茄叶霉病病斑双层K-means聚类分割方法 被引量:3
1
作者 秦立峰 张延苏 《安徽农业科学》 CAS 2018年第3期169-170,198,共3页
提出了混合颜色特征下双层K-means聚类分割方法,首先在I分量将图像像素采用K-means聚类分割方法聚为4类;取聚类中心最大的2种像素的a*b*分量,进行第2次K-means聚类,得到病斑图像。对采集的21幅病害图片的试验结果表明,该方法分割结果的... 提出了混合颜色特征下双层K-means聚类分割方法,首先在I分量将图像像素采用K-means聚类分割方法聚为4类;取聚类中心最大的2种像素的a*b*分量,进行第2次K-means聚类,得到病斑图像。对采集的21幅病害图片的试验结果表明,该方法分割结果的平均重合系数为97.53%,平均假阳性率为1.22%,平均假阴性率为3.52%。该研究可为进一步病害特征提取识别与病害程度诊断研究提供技术参考。 展开更多
关键词 番茄叶霉病 图像分割 双层k-means聚类
在线阅读 下载PDF
基于k-means聚类熵权评价的飞行器质心调整优化方法
2
作者 田小川 郁立勇 +2 位作者 白斌 陈思 何文凯 《导弹与航天运载技术(中英文)》 北大核心 2025年第1期37-41,共5页
针对飞行器质心调整流程复杂、耗时长的问题,运用k-means聚类方法,对飞行器配重历史数据进行聚类,基于样本聚类结果,计算出不同样本下飞行器标准配重,再通过模拟装配计算增加标准配重后的飞行器质心偏移,并得出一系列统计数据,最后采用... 针对飞行器质心调整流程复杂、耗时长的问题,运用k-means聚类方法,对飞行器配重历史数据进行聚类,基于样本聚类结果,计算出不同样本下飞行器标准配重,再通过模拟装配计算增加标准配重后的飞行器质心偏移,并得出一系列统计数据,最后采用基于熵权的综合评价方法对比质心调整效果,选出最优的飞行器标准配重,进而简化飞行器质心调整流程,大幅提升飞行器生产效率。 展开更多
关键词 k-means 熵权评价模型 飞行器质心调整
在线阅读 下载PDF
启发式k-means聚类算法的改进研究 被引量:2
3
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 算法 k-means 启发式算法 仔细播种 局部异常因子 离群点
在线阅读 下载PDF
基于改进K-means聚类和遗传算法的混合算法求解异构车辆路径问题
4
作者 吴麟麟 吕一鸣 +1 位作者 何美玲 韩珣 《物流技术》 2024年第7期48-62,共15页
由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时... 由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时间窗惩罚成本的混合整数规划模型。同时,提出了一种基于改进K-means聚类和遗传算法的混合算法对模型进行求解。实验仿真先求解不考虑时间窗的问题初步证明混合算法的有效性,再在带时间窗的问题中求解不同规模算例的单一及异构车型结果,以证明异构车型配送更优。最后,对该混合算法的求解结果与其他混合算法的求解结果进行对比分析,证明了混合算法的优越性。研究结果表明:该混合算法求解的异构车型结果优于单一车型,并且比其他混合算法求解的异构车型结果更优,异构车辆配送使用的配送车辆数更少,总成本也更低,该混合算法具有更好的效率和性能。 展开更多
关键词 异构车辆路径问题 改进k-means算法 遗传算法 混合算法
在线阅读 下载PDF
一种基于改进差分进化的K-Means聚类算法研究 被引量:2
5
作者 刘红达 王福顺 +3 位作者 孙小华 张广辉 王斌 何振学 《现代电子技术》 北大核心 2024年第18期156-162,共7页
为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多... 为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多变异策略并引入权重系数,在算法的不同进化阶段发挥不同变异策略的优势,平衡算法的全局和局部搜索能力,加快算法的收敛速度;最后,提出一种基于当前种群最佳个体的高斯扰动交叉操作,为个体提供更优进化方向的同时保持种群在“维”上的多样性,避免算法陷入局部最优。将算法停止执行时输出的最优解作为初始聚类中心替代传统K-Means随机选取的聚类中心。将提出算法在UCI公共数据库中的Vowel、Iris、Glass数据集和合成数据集Jcdx上进行对比实验,误差平方和(SSE)相对于传统K-Means分别减小5.65%、19.59%、13.31%、6.1%,聚类时间分别减少83.03%、81.33%、77.47%、92.63%。实验结果表明,提出的改进算法具有更快的收敛速度和更好的寻优能力,显著提升了聚类的效果、效率和稳定性。 展开更多
关键词 k-means算法 差分进化算法 多变异策略 高斯扰动 UCI数据库 中心优化
在线阅读 下载PDF
基于改进K-means聚类算法的网络异常数据挖掘与分类方法
6
作者 贺萌 《无线互联科技》 2024年第18期119-122,共4页
为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类... 为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类对数据的最大最小距离展开计算,融合隶属度函数与密度峰值优化算法,改进聚类初始中心选择及簇边界调整,从而提高异常识别准确性和分类效率。通过实验结果证明,该方法能够明显改善聚类效果与性能。 展开更多
关键词 k-means算法 网络异常 数据挖掘 数据分 离群点检测
在线阅读 下载PDF
基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估 被引量:3
7
作者 管筝 印涌强 +1 位作者 张晓祥 陈跃红 《应用科学学报》 CAS CSCD 北大核心 2024年第3期388-404,共17页
为了更好地分析空间异质性对山洪灾害易发性评估的影响,建立了基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估模型。首先,选取中国江西省12338个小流域为研究区,对各时段不同频率降雨量指标进行K-means聚类。其次,以误差平... 为了更好地分析空间异质性对山洪灾害易发性评估的影响,建立了基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估模型。首先,选取中国江西省12338个小流域为研究区,对各时段不同频率降雨量指标进行K-means聚类。其次,以误差平方和与平均轮廓系数为聚类效果评价指标,将小流域分为2个类内聚集、类外分散的子集。最后,针对不同子集,从几何特征、环境特征以及降水特征3个方面选取平均坡度、形心高程、形状系数、最长汇流路径比降、地形湿度指数、归一化植被指数、距离河流最近距离、降雨量、洪峰模数以及汇流时间10个山洪影响因素,应用自适应增强算法与极致梯度提升算法进行山洪灾害易发性评估。研究发现,降水是导致山洪灾害的重要因素,江西省高降水区域山洪灾害易发程度普遍高于低降水区,同时省内高风险区分布较为分散,主要分布在东北区域与西北边缘区域。对聚类后两类相似小流域分别进行山洪易发性评估,接受者操作特征曲线下面积值均在0.90以上,精度较聚类前有所提高。聚类策略作为易发性评估模型的前驱过程,可以有效解决小流域异质性问题。 展开更多
关键词 空间异质性 k-means 集成学习 自适应增强 极致梯度提升 山洪灾害
在线阅读 下载PDF
基于K-means聚类和图像分割的紫色土发生层边界识别 被引量:1
8
作者 杨凯 慈恩 +2 位作者 刘彬 陈洋洋 谢宇 《土壤学报》 CAS CSCD 北大核心 2024年第4期939-951,共13页
土壤学始于对土壤剖面及其形态特征的观察,剖面发生层的划分与发生层边界特征的描述是土壤调查的基础。实地划分发生层需要丰富的土壤学实践经验,存在主观和缺乏统一划分标准的问题。以紫色土剖面图像为研究对象,采用K-means聚类和图像... 土壤学始于对土壤剖面及其形态特征的观察,剖面发生层的划分与发生层边界特征的描述是土壤调查的基础。实地划分发生层需要丰富的土壤学实践经验,存在主观和缺乏统一划分标准的问题。以紫色土剖面图像为研究对象,采用K-means聚类和图像分割技术,结合图像的颜色特征(CIELab色彩空间)和纹理特征(Entropy)识别紫色土剖面发生层边界,并与实地划分的结果进行比较。结果表明:(1)CIELab色彩空间的a、b通道和Entropy纹理特征,可以划分出供试剖面的主要发生层(A、B、C)和基岩(R);(2)聚类识别的发生层数量和发生层深度与实地识别的结果基本一致;除Z2剖面的C层和Z6剖面的Ap层聚类识别与实地识别的发生层下边界深度相差较大(分别为13cm和8cm)外,其余发生层下边界深度相差均在3 cm以内;(3)聚类识别的发生层边界形状更为不规则,明显度更为模糊。K-means聚类和图像分割技术实现了紫色土剖面发生层边界的客观识别,可为土壤剖面智能辨识系统的开发提供科学参考。 展开更多
关键词 剖面图像 发生层 k-means 图像分割 颜色 纹理
在线阅读 下载PDF
融合异常检测与区域分割的高效K-means聚类算法 被引量:1
9
作者 尹宏伟 杭雨晴 胡文军 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期80-88,共9页
传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,... 传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,以提高聚类性能。其次,利用近邻簇搜索技术对各类簇进行自适应的区域分割,以减少冗余计算,提高算法执行效率。最后,为验证所提方法的有效性,在多个合成数据集和真实数据集上分别进行测试。实验结果表明:所提算法聚类性能和执行效率优于其他算法;在添加10%异常样本的Wine数据集上准确度可达0.911。 展开更多
关键词 k-means 异常检测 区域分割 近邻簇搜索 自适应
在线阅读 下载PDF
基于K-means聚类算法的人事管理异常数据识别和自动处理系统 被引量:1
10
作者 韩晓萃 胡业维 +2 位作者 吴庆艳 胡敏 曾思颖 《电子设计工程》 2024年第24期27-31,共5页
针对人事管理异常数据影响人事管理水平的问题,设计基于K-means聚类算法的人事管理异常数据识别和自动处理系统。利用全局优化K-means聚类算法,对人事管理数据进行聚类处理。该算法搜寻高密度的人事管理数据作为初始聚类中心,将人事管... 针对人事管理异常数据影响人事管理水平的问题,设计基于K-means聚类算法的人事管理异常数据识别和自动处理系统。利用全局优化K-means聚类算法,对人事管理数据进行聚类处理。该算法搜寻高密度的人事管理数据作为初始聚类中心,将人事管理数据聚类为多个簇。利用K-means聚类算法构建人事管理数据的自回归模型,确定人事管理数据参量的转移概率序列。转移概率序列非聚类簇中的数据时,对应数据即为人事管理异常数据识别结果。采用指数加权移动平均数方法自动修正处理所识别的人事管理异常数据。系统测试结果表明,所设计系统能够有效识别人事管理考勤数据、薪资数据中的异常数据,能够自动修正异常数据,使人事管理数据恢复正常。 展开更多
关键词 k-means算法 人事管理 异常数据识别 自动处理系统 中心 转移概率
在线阅读 下载PDF
基于K-means聚类的多种群麻雀搜索算法 被引量:3
11
作者 闫少强 刘卫东 +2 位作者 杨萍 吴丰轩 阎哲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期508-518,共11页
为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优... 为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优的概率;采用K-means聚类划分子种群,增加子种群间的差异性,同时使子种群内个体在小范围内专注搜索,提升前期搜索效率;借助加权重心交流策略改善种群间交流的质量,减少自身种群的干扰,同时消减因某一子种群陷入局部最优而导致所有子种群陷入局部最优的风险;引入动态反向学习到警戒者中,增强其反捕食行为,改善因子种群数量增加而带来的收敛速度变慢和收敛精度不足的缺陷。经测试函数仿真实验表明:较SSA等算法,KSSA具有更优的寻优性能。 展开更多
关键词 麻雀搜索算法 优化算法 多种群 k-means 种群交流
在线阅读 下载PDF
基于K-means聚类和极限学习机组合算法的短期光伏功率预测 被引量:5
12
作者 黄牧涛 邢芳菲 +1 位作者 陈兴邦 卢明 《水电能源科学》 北大核心 2024年第2期217-220,216,共5页
考虑光伏功率的预测精度强依赖于天气模态和气候条件等因素影响,提出了基于极限学习机组合算法的短期光伏功率预测方法。首先,基于K-means聚类算法进行天气分型,分为4个季节下晴天、多云天气、阴雨天气共12组不同天气类别。其次,针对天... 考虑光伏功率的预测精度强依赖于天气模态和气候条件等因素影响,提出了基于极限学习机组合算法的短期光伏功率预测方法。首先,基于K-means聚类算法进行天气分型,分为4个季节下晴天、多云天气、阴雨天气共12组不同天气类别。其次,针对天气分型结果,基于极限学习机ELM、遗传算法改进的极限学习机GA-ELM、鸟群算法改进的极限学习机BSA-ELM3种算法构建光伏功率预测模型。最后,以某光伏电站数据进行所提模型验证。预测结果表明,BSA-ELM预测精度最高,12种天气预测精度达到90%左右,各季节中预测精度最高的天气类型均为晴天,多云天气精度高于阴雨天气精度,可为含高比例光伏并网的新型电力系统安全稳定运行提供有效数据支撑。 展开更多
关键词 光伏发电功率预测 k-means 天气分型 极限学习机算法 遗传算法 鸟群算法
在线阅读 下载PDF
电网需求侧资源动态分布式k-means聚类算法 被引量:2
13
作者 黄静 饶尧 刘政 《大连交通大学学报》 CAS 2024年第2期109-114,共6页
为有效聚合电网需求侧资源,合理、高效利用电网资源,提出基于分布式k-means的电网需求侧资源动态聚类算法。通过基于置信半径的分布式k-means算法聚类采集到的电网需求侧资源数据,在模糊C均值进化神经网络中,以聚类得到的电网需求侧资... 为有效聚合电网需求侧资源,合理、高效利用电网资源,提出基于分布式k-means的电网需求侧资源动态聚类算法。通过基于置信半径的分布式k-means算法聚类采集到的电网需求侧资源数据,在模糊C均值进化神经网络中,以聚类得到的电网需求侧资源数据为输入向量,输出电网需求侧资源场景,依据场景存在概率,以电网侧资源日均峰谷差最小、DG消纳程度最高与日均负荷波动率最小为目标函数,以电网需求侧资源曲线波动率与负荷互补为约束条件,构建电网需求侧资源多场景聚类模型,经动态改变惯性因子(DCW)粒子群算法求解模型后,实现电网需求侧资源多场景聚类。试验结果表明:该方法可实现电网需求侧资源动态聚类,应用该方法聚类不同场景电网需求侧资源时的日负荷率较低,聚类效果较好,可满足实际电力需求侧资源动态聚类工作的需要。 展开更多
关键词 电网需求 侧资源 动态 分布式 k-means算法 模型
在线阅读 下载PDF
基于融合改进K-means聚类算法的数据检测技术 被引量:4
14
作者 郭克难 《电子设计工程》 2024年第5期41-45,共5页
针对现有医疗财务数据分析系统平台老旧,采用传统K-means算法进行数据处理时性能较差的问题,文中设计了一种财务异常数据检测算法。对于传统K-means算法存在的分类效果不佳、运行效率偏低等不足,该算法结合密度峰值法对样本点的局部密... 针对现有医疗财务数据分析系统平台老旧,采用传统K-means算法进行数据处理时性能较差的问题,文中设计了一种财务异常数据检测算法。对于传统K-means算法存在的分类效果不佳、运行效率偏低等不足,该算法结合密度峰值法对样本点的局部密度和高密度距离进行计算,进而优化簇中心的选择。同时融合PCA降维算法减少了数据的冗余信息,进一步提高了运行效率。通过引入LOF离群检测算法对分簇后的数据进行检测,从而得到异常数据结果。实验测试中,所提算法在人工数据集上的平均ARI指标为0.844,真实数据集的准确率则达到了79.2%,在所有对比算法中均为最优,表明该算法具有良好的性能,可以对财务异常数据进行准确地检测。 展开更多
关键词 k-means 密度峰值检测 主成分分析法 离群检测算法 异常数据检测
在线阅读 下载PDF
基于K-means聚类和随机森林的电缆风险评估及修复决策
15
作者 杨帆 王红斌 +3 位作者 方健 何嘉兴 黄柏 王莉 《南京航空航天大学学报》 CAS CSCD 北大核心 2024年第5期892-899,共8页
交联聚乙烯电缆是10 kV配电系统中的重要设备,其安全性至关重要。对电缆的修复决策做出科学判断,有助于提高配电系统的安全性并降低经济成本。鉴于此,本文提出了一种基于K-means聚类和随机森林(Random forest,RF)分类模型的电缆风险评... 交联聚乙烯电缆是10 kV配电系统中的重要设备,其安全性至关重要。对电缆的修复决策做出科学判断,有助于提高配电系统的安全性并降低经济成本。鉴于此,本文提出了一种基于K-means聚类和随机森林(Random forest,RF)分类模型的电缆风险评估及修复决策方法。该方法首先根据电缆的绝缘状态,定义电缆的风险等级和风险程度;然后利用K-means聚类算法对多个老化指标进行聚类以实现风险等级区间的划分,从而建立多老化指标风险矩阵;基于多老化指标风险矩阵,利用综合权重法确定多维老化指标所对应的分类标签;最后基于RF算法建立并训练电缆的修复决策分类模型,输出电缆的修复决策结果。所提方法的平均正确率达到99.70%,实现了电缆快速且可靠的修复决策。 展开更多
关键词 老化指标 风险矩阵 电缆 随机森林 k-means
在线阅读 下载PDF
融合SOM神经网络与K-means聚类算法的用户信用画像研究 被引量:2
16
作者 罗博炜 罗万红 谭家驹 《铁路计算机应用》 2024年第7期14-19,共6页
为提高现阶段基于K-Means聚类算法的用户信用画像模型的准确性和实时性,提出一种融合自组织映射(SOM,Self-Organizing Map)神经网络与K-Means聚类算法的改进方法。通过SOM对用户数据进行降维和特征提取,直接获得最优聚类数目后再用K-Me... 为提高现阶段基于K-Means聚类算法的用户信用画像模型的准确性和实时性,提出一种融合自组织映射(SOM,Self-Organizing Map)神经网络与K-Means聚类算法的改进方法。通过SOM对用户数据进行降维和特征提取,直接获得最优聚类数目后再用K-Means算法进行聚类分析。通过真实在线借贷平台数据对所提方法进行验证,结果表明,该方法可提升用户信用画像分析的质量,更好地满足金融数据分析中对实时管理和风险控制的要求,为金融机构提供精准的决策支持。 展开更多
关键词 用户信用画像 SOM神经网络 k-means算法 时间复杂度 风险控制
在线阅读 下载PDF
基于K-Means聚类算法的客户体验管理优化策略研究 被引量:1
17
作者 张蕊 张丽红 《长江信息通信》 2024年第2期217-219,223,共4页
近年来,中国市场进入存量博弈时代,人口红利向人心红利转变,共同推动产业的迭代升级的迫切性日益凸显,对千人千面服务的要求也越来越高。为了解决这一问题,提出了结合K-Means聚类算法实现客户分群来优化客户体验管理。其中,K-Means聚类... 近年来,中国市场进入存量博弈时代,人口红利向人心红利转变,共同推动产业的迭代升级的迫切性日益凸显,对千人千面服务的要求也越来越高。为了解决这一问题,提出了结合K-Means聚类算法实现客户分群来优化客户体验管理。其中,K-Means聚类算法可以寻找出K个不同组别的簇,并将该组别所包含数值的均值作为各组别的核心。聚类结果可为后续各类客户提供的精细化服务和优化客户体验管理提供重要依据,实验表明,使用K-Means聚类的客户分群比使用其他聚类算法精准度更高,花费时间更短。 展开更多
关键词 客户体验管理 k-means
在线阅读 下载PDF
基于K-means聚类及模糊判别的卷烟包灰性能综合评价方法
18
作者 楚文娟 郭丽霞 +5 位作者 程东旭 王红霞 崔廷 冯银龙 王建民 鲁平 《轻工学报》 CAS 北大核心 2024年第6期93-100,共8页
为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,... 为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,建立了一种卷烟包灰性能综合评价方法。结果表明:将原始变量转换成区间为60~100、平均值在80左右的得分,可使评价结果具象化且更加符合认知习惯;5项指标的权重由高到低依次为裂口率(0.27)>缩灰率(0.25)>灰色(0.18)>碳线整齐度(0.16)>碳线宽度(0.14);卷烟包灰性能可划分为优、良、差三档,各档得分区间依次为(85,100]、[75,85]、[60,75);不同档次代表性卷烟的灰柱视觉效果对比结果证明,综合得分可客观反映卷烟包灰性能的优劣。 展开更多
关键词 卷烟 包灰性能 k-means 模糊判别 Critic赋权法
在线阅读 下载PDF
基于改进k-means算法的电力负荷数据聚类方法
19
作者 吕相沅 陈安琪 +1 位作者 刘青 程昱舒 《电子设计工程》 2024年第20期121-124,129,共5页
针对现有数据聚类方法难以对电力系统负荷数据进行有效聚类的问题,该文结合改进k-means算法,完成电力负荷数据聚类方法设计。该研究基于电力负荷数据中心点生成过程,构建中心点间距与类簇距离判定函数,筛选电力负荷数据聚类中心。确定... 针对现有数据聚类方法难以对电力系统负荷数据进行有效聚类的问题,该文结合改进k-means算法,完成电力负荷数据聚类方法设计。该研究基于电力负荷数据中心点生成过程,构建中心点间距与类簇距离判定函数,筛选电力负荷数据聚类中心。确定聚类中心后,采用数据分离方法完成正常负荷数据和异常负荷数据的分离,在分离过程中应保证数据连续,以避免潜在有用数据丢失。利用改进的k-means算法分析电力负荷数据,计算不同种类数据间的欧氏距离。设定指针矩阵,融合不同类中心点,对原始数据区间规范化操作,获取不同簇的负荷数据聚类通道传输功率谱密度。将数据依次分配到不同簇上,实现电力负荷数据聚类。由实验结果可知,该方法站点1数据聚类范围为0.3~0.48 pu,站点2数据聚类范围为0.34~0.47 pu,优于对比方法,与理想聚类范围最贴近,具有良好的聚类效果。 展开更多
关键词 改进k-means算法 电力负荷 数据 区间规范化操作
在线阅读 下载PDF
基于改进K-means聚类的电网抢修资源优化技术
20
作者 姚宗溥 张韶华 +2 位作者 余伟 杨宁 汪毅 《电子设计工程》 2024年第11期131-135,共5页
针对传统电网抢修资源配置中存在主观性强、处理突发状况能力较弱的问题,文中基于改进K-means聚类算法提出了一种电网抢修资源的分配策略。该策略采用改进算法分析平台的工单数据,以获得聚合数据包,并利用主成分分析法完成对数据的降维... 针对传统电网抢修资源配置中存在主观性强、处理突发状况能力较弱的问题,文中基于改进K-means聚类算法提出了一种电网抢修资源的分配策略。该策略采用改进算法分析平台的工单数据,以获得聚合数据包,并利用主成分分析法完成对数据的降维。降维后的数据经过深度稀疏自编码器的训练,得到的数据特征被K-means++算法聚类,进而输出工单任务的优先级。所提改进算法考虑了多种复杂因素的影响,相比传统算法其综合性能更为理想。多项实验结果表明,所提算法的聚类性能和数据训练性能在多个对比算法中均为最优,可以准确地识别出测试用例中的任务等级,为电网抢修资源的分配与决策提供技术支撑。 展开更多
关键词 k-means 主成分分析法 深度稀疏自编码器 资源配置 电网抢修
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部