期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于DI-PointNet的变电站主设备点云高精度语义分割方法
1
作者 裴少通 孙海超 +2 位作者 孙志周 胡晨龙 祝雨馨 《电工技术学报》 北大核心 2025年第9期2917-2930,共14页
在变电站机器人巡检任务中,三维点云数据的高精度语义分割是关键技术之一,有助于机器人理解电力设备、障碍物和其他物体的空间布局。然而,现有的点云分割算法在变电站场景中的应用效果有限,准确度较低、计算复杂度高,难以实现对变电站... 在变电站机器人巡检任务中,三维点云数据的高精度语义分割是关键技术之一,有助于机器人理解电力设备、障碍物和其他物体的空间布局。然而,现有的点云分割算法在变电站场景中的应用效果有限,准确度较低、计算复杂度高,难以实现对变电站主设备点云的准确分割。为了解决这一问题,该文提出了一种基于PointNet++的DI-PointNet算法。首先,采用双层连续变换器模块增强点云之间的信息交互,有效地聚合长距离上下文,增大网络有效感受野;其次,通过分层键采样策略生成自注意力机制所需的键值,降低算法复杂度;最后,使用倒置残差模块,通过倒置瓶颈设计和残差连接缓解梯度消失,有效地增加模型的深度,同时降低计算复杂度。此外,该文构建了变电站点云数据集,对DI-PointNet算法进行详细的消融实验,并与主流深度学习算法和电力领域典型点云分割算法进行对比。实验验证结果表明,DI-PointNet算法对变电站主设备点云分割的平均交并比达到82.5%,相比PointNet++算法提高了2.1个百分点,且总体精度提高了3.4个百分点,达到90.1%。DI-PointNet算法为智能电力设备巡检和维护提供了有效的解决方案。 展开更多
关键词 点云语义分割 双层连续变换器 分层键采样 倒置残差 变电站
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部