利用双树复数小波变换(Dual Tree Complex Wavelet Transform,DTCWT)的近似平移不变性和多方向选择性,提出了一种基于DTCWT变换的SAR图像噪声抑制方法。首先对无噪声污染图像的复数小波系数的统计概率分布进行建模;然后利用此先验概率模...利用双树复数小波变换(Dual Tree Complex Wavelet Transform,DTCWT)的近似平移不变性和多方向选择性,提出了一种基于DTCWT变换的SAR图像噪声抑制方法。首先对无噪声污染图像的复数小波系数的统计概率分布进行建模;然后利用此先验概率模型,采用最大后验概率方法从含噪小波系数中估计出无噪声污染的小波系数;最后经重构得到滤波后的图像。实验结果表明,此方法优于其他一些相干斑抑制方法。展开更多
提出了一种基于双密度双树复小波(double-density dual-tree complex wavelet transform,DDDT-CWT)基的结构化CS图像重构算法,该算法将图像在双密度双树复小波变换下的系数呈现的树结构化特征与Co Sa MP重构算法相结合,实现了对原始图...提出了一种基于双密度双树复小波(double-density dual-tree complex wavelet transform,DDDT-CWT)基的结构化CS图像重构算法,该算法将图像在双密度双树复小波变换下的系数呈现的树结构化特征与Co Sa MP重构算法相结合,实现了对原始图像的更精确重构.实验结果表明:在相同压缩比的前提下,与传统使用DWT基且未考虑变换系数结构化特征的重构算法相比,使用DDDT-CWT基和融入结构化特征的重构算法分别可获得2.9~3.2 d B与0.2~1.2 d B的增益,综合两者后的重构算法可获得3.8~4.3 d B以上的增益.展开更多
红外焦平面成像质量受材料生长及器件制备工艺的影响,易出现盲元、条纹噪声等缺陷。条纹噪声经常会导致盲元的检测偏差,准确的盲元检测对于后续图像处理具有重要意义。利用双密度双树复数小波分解的多方向性小波系数,结合广义高斯分布...红外焦平面成像质量受材料生长及器件制备工艺的影响,易出现盲元、条纹噪声等缺陷。条纹噪声经常会导致盲元的检测偏差,准确的盲元检测对于后续图像处理具有重要意义。利用双密度双树复数小波分解的多方向性小波系数,结合广义高斯分布将高频小波系数按照对条纹噪声影响程度分别赋予不同权值并进行单支重构,消除了条纹噪声对盲元检测的影响,得到初步"干净"的预处理图像,进而对预处理图像运用3σ准则进行盲元检测。通过短波Hg Cd Te红外焦平面成像的实践验证,该方法对具有条纹噪声特征的红外图像盲元检测更加准确。展开更多
根据尺度间小波系数的相关性和方差是双变量分布模型参数的理论,提出了应用基于上下文模型的空间自适应方法估计方差,并用双变量收缩法进行图像去噪的新方法.将新方法与仅使用待估计点与它的方形邻域窗来估计方差的双变量阈值去噪方法...根据尺度间小波系数的相关性和方差是双变量分布模型参数的理论,提出了应用基于上下文模型的空间自适应方法估计方差,并用双变量收缩法进行图像去噪的新方法.将新方法与仅使用待估计点与它的方形邻域窗来估计方差的双变量阈值去噪方法进行了比较.结果表明,用新方法去噪时图像的P SN R值与视觉效果都有提高和改善,新去噪方法具有理论上的一致性.展开更多
文摘利用双树复数小波变换(Dual Tree Complex Wavelet Transform,DTCWT)的近似平移不变性和多方向选择性,提出了一种基于DTCWT变换的SAR图像噪声抑制方法。首先对无噪声污染图像的复数小波系数的统计概率分布进行建模;然后利用此先验概率模型,采用最大后验概率方法从含噪小波系数中估计出无噪声污染的小波系数;最后经重构得到滤波后的图像。实验结果表明,此方法优于其他一些相干斑抑制方法。
文摘提出了一种基于双密度双树复小波(double-density dual-tree complex wavelet transform,DDDT-CWT)基的结构化CS图像重构算法,该算法将图像在双密度双树复小波变换下的系数呈现的树结构化特征与Co Sa MP重构算法相结合,实现了对原始图像的更精确重构.实验结果表明:在相同压缩比的前提下,与传统使用DWT基且未考虑变换系数结构化特征的重构算法相比,使用DDDT-CWT基和融入结构化特征的重构算法分别可获得2.9~3.2 d B与0.2~1.2 d B的增益,综合两者后的重构算法可获得3.8~4.3 d B以上的增益.
文摘红外焦平面成像质量受材料生长及器件制备工艺的影响,易出现盲元、条纹噪声等缺陷。条纹噪声经常会导致盲元的检测偏差,准确的盲元检测对于后续图像处理具有重要意义。利用双密度双树复数小波分解的多方向性小波系数,结合广义高斯分布将高频小波系数按照对条纹噪声影响程度分别赋予不同权值并进行单支重构,消除了条纹噪声对盲元检测的影响,得到初步"干净"的预处理图像,进而对预处理图像运用3σ准则进行盲元检测。通过短波Hg Cd Te红外焦平面成像的实践验证,该方法对具有条纹噪声特征的红外图像盲元检测更加准确。
文摘根据尺度间小波系数的相关性和方差是双变量分布模型参数的理论,提出了应用基于上下文模型的空间自适应方法估计方差,并用双变量收缩法进行图像去噪的新方法.将新方法与仅使用待估计点与它的方形邻域窗来估计方差的双变量阈值去噪方法进行了比较.结果表明,用新方法去噪时图像的P SN R值与视觉效果都有提高和改善,新去噪方法具有理论上的一致性.