微生物燃料电池(MFC)作为一种生物电化学技术,可以将餐厨垃圾中的有机废物转化为电能。采用双室微生物燃料电池装置,以不同组分的餐厨垃圾作为阳极底物,分析对比了各反应器中有机物的去除效果和产电性能。以溶解性化学需氧量(SCOD)、总...微生物燃料电池(MFC)作为一种生物电化学技术,可以将餐厨垃圾中的有机废物转化为电能。采用双室微生物燃料电池装置,以不同组分的餐厨垃圾作为阳极底物,分析对比了各反应器中有机物的去除效果和产电性能。以溶解性化学需氧量(SCOD)、总有机碳(TOC)和氨氮的去除率为参数,分析了MFC对不同组分餐厨垃圾的处理效果。并通过电压变化情况分析了不同有机组分对MFC产电特性的影响。结果表明:MFC对果皮类和蔬菜类SCOD的去除效果较好,去除率分别为86.46%和89.08%。然而对米面类和混合类的处理效果不佳。果皮类、蔬菜类和混合类的TOC去除率分别为83.87%、73.72%和34.63%,米面类TOC含量仍较高。MFC对各组分中氨氮的去除率均高于90%。MFC运行过程中最大输出电压的大小为混合类>果皮类>蔬菜类>米面类。混合类产生的最大面积电流密度和面积功率密度分别为1036 mA/m^2和623 m W/m^2。该研究为餐厨垃圾的处置与资源化提供了学术参考。展开更多
对比研究空气阴极单室与双室微生物燃料电池(MFC)在去除硫化物及产电性能。当硫化物浓度为100mg/L,共基质葡萄糖浓度为812 mg/L时,单室和双室MFC的最大开路电压分别达897.2 m V和821.7 m V,最大输出功率分别为340.0 m W/m^2和273.8 m W/...对比研究空气阴极单室与双室微生物燃料电池(MFC)在去除硫化物及产电性能。当硫化物浓度为100mg/L,共基质葡萄糖浓度为812 mg/L时,单室和双室MFC的最大开路电压分别达897.2 m V和821.7 m V,最大输出功率分别为340.0 m W/m^2和273.8 m W/m^2,库仑效率分别为5.6%和10.7%,单室MFC表现出更好的电能输出,而双室MFC的能量转化效率更高。单室MFC运行72小时后,含硫化物废水中的硫化物去除率为75.4%。含硫化物废水中的有机质也可以得到同步去除,TOC的去除率为17.8%。上述结果表明利用MFC去除硫化物并同步产电是可行的,阴极是系统的主要限制因素。展开更多
微生物燃料电池(MFC)是能在处理有机污染物时产电的装置。着重研究了MFC同步处理老龄垃圾渗滤液和其产电能力。实验在典型双室MFC装置中进行,其中以碳毡为电极材料,活性污泥为接种源,铁氰化钾溶液为阴极液。MFC驯化6个周期后产电达到稳...微生物燃料电池(MFC)是能在处理有机污染物时产电的装置。着重研究了MFC同步处理老龄垃圾渗滤液和其产电能力。实验在典型双室MFC装置中进行,其中以碳毡为电极材料,活性污泥为接种源,铁氰化钾溶液为阴极液。MFC驯化6个周期后产电达到稳定,此时以垃圾渗滤液和污泥作为阳极液,检测了电池的产电性能及其对垃圾渗滤液的处理效果。结果表明,经过驯化电池的最大功率密度比使用未驯化的电极对照组提高了22倍,达到了439.1 m W/m^2,电池内阻约为1 kΩ。同时扫描电镜(SEM)观察到电极表面形成一层由典型的球菌和杆菌组成的生物膜。电池运行15 d,垃圾渗滤液化学需氧量(COD)、总氮、氨氮的去除率分别达到了(49.05%±1.40%)、(68.95%±1.07%)、(73.54%±0.91%)。本研究为同步产能及处理老龄垃圾渗滤液提供了数据支持。展开更多
为了探究双室微生物燃料电池同时处理活性污泥及氨氮废水的性能及机理,利用微生物燃料电池阳极室处理活性污泥,阴极室处理氨氮废水。分析了阳极室不同灭菌与未灭菌污泥的添加比例,阴极室是否接种硝化菌及不同氨氮初始浓度下微生物燃料...为了探究双室微生物燃料电池同时处理活性污泥及氨氮废水的性能及机理,利用微生物燃料电池阳极室处理活性污泥,阴极室处理氨氮废水。分析了阳极室不同灭菌与未灭菌污泥的添加比例,阴极室是否接种硝化菌及不同氨氮初始浓度下微生物燃料电池的产电特性,通过各反应器的电流密度、功率密度及极化曲线变化来分析微生物燃料电池的最佳运行条件。通过化学需氧量(COD)、氨氮、微生物群落差异化分析微生物燃料电池处理活性污泥及氨氮废水的性能。结果表明:微生物燃料电池在阳极灭菌污泥与未灭菌污泥比例为1∶10时,阳极室COD去除率均达到80%以上,此时阴极室接种硝化菌且氨氮初始浓度为50 mg/L的条件下产电效果最好,获得电流密度峰值为366.38 m A/m^2,且峰值持续时间最长;当阴极接种硝化菌时,不同的阴阳极室条件下阴极室氨氮都可以完全去除。展开更多
文摘微生物燃料电池(MFC)作为一种生物电化学技术,可以将餐厨垃圾中的有机废物转化为电能。采用双室微生物燃料电池装置,以不同组分的餐厨垃圾作为阳极底物,分析对比了各反应器中有机物的去除效果和产电性能。以溶解性化学需氧量(SCOD)、总有机碳(TOC)和氨氮的去除率为参数,分析了MFC对不同组分餐厨垃圾的处理效果。并通过电压变化情况分析了不同有机组分对MFC产电特性的影响。结果表明:MFC对果皮类和蔬菜类SCOD的去除效果较好,去除率分别为86.46%和89.08%。然而对米面类和混合类的处理效果不佳。果皮类、蔬菜类和混合类的TOC去除率分别为83.87%、73.72%和34.63%,米面类TOC含量仍较高。MFC对各组分中氨氮的去除率均高于90%。MFC运行过程中最大输出电压的大小为混合类>果皮类>蔬菜类>米面类。混合类产生的最大面积电流密度和面积功率密度分别为1036 mA/m^2和623 m W/m^2。该研究为餐厨垃圾的处置与资源化提供了学术参考。
文摘对比研究空气阴极单室与双室微生物燃料电池(MFC)在去除硫化物及产电性能。当硫化物浓度为100mg/L,共基质葡萄糖浓度为812 mg/L时,单室和双室MFC的最大开路电压分别达897.2 m V和821.7 m V,最大输出功率分别为340.0 m W/m^2和273.8 m W/m^2,库仑效率分别为5.6%和10.7%,单室MFC表现出更好的电能输出,而双室MFC的能量转化效率更高。单室MFC运行72小时后,含硫化物废水中的硫化物去除率为75.4%。含硫化物废水中的有机质也可以得到同步去除,TOC的去除率为17.8%。上述结果表明利用MFC去除硫化物并同步产电是可行的,阴极是系统的主要限制因素。
文摘微生物燃料电池(MFC)是能在处理有机污染物时产电的装置。着重研究了MFC同步处理老龄垃圾渗滤液和其产电能力。实验在典型双室MFC装置中进行,其中以碳毡为电极材料,活性污泥为接种源,铁氰化钾溶液为阴极液。MFC驯化6个周期后产电达到稳定,此时以垃圾渗滤液和污泥作为阳极液,检测了电池的产电性能及其对垃圾渗滤液的处理效果。结果表明,经过驯化电池的最大功率密度比使用未驯化的电极对照组提高了22倍,达到了439.1 m W/m^2,电池内阻约为1 kΩ。同时扫描电镜(SEM)观察到电极表面形成一层由典型的球菌和杆菌组成的生物膜。电池运行15 d,垃圾渗滤液化学需氧量(COD)、总氮、氨氮的去除率分别达到了(49.05%±1.40%)、(68.95%±1.07%)、(73.54%±0.91%)。本研究为同步产能及处理老龄垃圾渗滤液提供了数据支持。
文摘为了探究双室微生物燃料电池同时处理活性污泥及氨氮废水的性能及机理,利用微生物燃料电池阳极室处理活性污泥,阴极室处理氨氮废水。分析了阳极室不同灭菌与未灭菌污泥的添加比例,阴极室是否接种硝化菌及不同氨氮初始浓度下微生物燃料电池的产电特性,通过各反应器的电流密度、功率密度及极化曲线变化来分析微生物燃料电池的最佳运行条件。通过化学需氧量(COD)、氨氮、微生物群落差异化分析微生物燃料电池处理活性污泥及氨氮废水的性能。结果表明:微生物燃料电池在阳极灭菌污泥与未灭菌污泥比例为1∶10时,阳极室COD去除率均达到80%以上,此时阴极室接种硝化菌且氨氮初始浓度为50 mg/L的条件下产电效果最好,获得电流密度峰值为366.38 m A/m^2,且峰值持续时间最长;当阴极接种硝化菌时,不同的阴阳极室条件下阴极室氨氮都可以完全去除。