期刊文献+
共找到1,210篇文章
< 1 2 61 >
每页显示 20 50 100
基于双向LSTM神经网络的可穿戴跌倒预警研究 被引量:3
1
作者 李玲艺 潘巨龙 +1 位作者 项睿涵 方堃 《传感技术学报》 CAS CSCD 北大核心 2024年第5期849-856,共8页
为了在老年人跌倒之前进行预判并及时触发跌倒防护气囊,防止跌倒对老年人身心造成严重伤害,提出了基于双向长短期记忆神经网络的轻量级跌倒预测算法,采用深度学习模型自动提取加速度计数据深层特征,省去因人工提取跌倒数据特征所消耗的... 为了在老年人跌倒之前进行预判并及时触发跌倒防护气囊,防止跌倒对老年人身心造成严重伤害,提出了基于双向长短期记忆神经网络的轻量级跌倒预测算法,采用深度学习模型自动提取加速度计数据深层特征,省去因人工提取跌倒数据特征所消耗的时间,提升了跌倒预测模型的泛化能力。首先根据跌倒落地时刻和前置时间截取数据窗口作为输入;其次设计轻量级双向长短期记忆神经网络提取加速度特征并预测跌倒;最后借助TensorFlow Lite框架对模型进行轻量化改造。实验结果表明所提算法在SisFall跌倒公开数据集中获得了96.92%的准确率,95.73%的敏感度,98.15%的特异度,跌倒前置反应时间达215 ms,足以触发跌倒防护气囊。对应的TensorFlow Lite模型所占空间大小仅为62.2 kB,算法运行时间为1.20 ms,有望部署在嵌入式可穿戴终端,进行实时跌倒预测。所提算法实现了更高的预测精度并具有较长的跌倒预警时间,更适于资源受限的嵌入式设备,为老年人跌倒预测和可穿戴式跌倒保护装置的开发提供了进一步的参考。 展开更多
关键词 跌倒预测 深度学习 双向lstm 前置时间 可穿戴设备 保护气囊
在线阅读 下载PDF
双向LSTM神经网络的航空发动机故障预测 被引量:24
2
作者 曾慧洁 郭建胜 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2019年第4期26-32,共7页
准确的航空发动机故障预测能够为维修决策提供依据,提高装备完好率,避免灾难性故障并最小化经济损失。根据航空发动机传感器数据特点,提出一种基于双向长短期记忆(LSTM)神经网络的故障预测方法,建立故障预测模型,包括数据预处理、网络... 准确的航空发动机故障预测能够为维修决策提供依据,提高装备完好率,避免灾难性故障并最小化经济损失。根据航空发动机传感器数据特点,提出一种基于双向长短期记忆(LSTM)神经网络的故障预测方法,建立故障预测模型,包括数据预处理、网络模型设计、训练与测试,得到在多种工作条件和故障下具有较强泛化能力的神经网络预测模型。使用C-MAPSS数据集对模型进行仿真验证,所提出的双向LSTM故障预测模型通过与RNN、GRU、LSTM时间序列模型对比,误差下降33.58%,得到更高的预测精度,非对称评分下降71.22%,具有更好的适应性。 展开更多
关键词 故障预测 时间序列 双向lstm神经网络
在线阅读 下载PDF
基于双向LSTM神经网络模型的中文分词 被引量:40
3
作者 金宸 李维华 +2 位作者 姬晨 金绪泽 郭延哺 《中文信息学报》 CSCD 北大核心 2018年第2期29-37,共9页
中文分词是中文自然语言处理的基础。分词质量的好坏直接影响之后的自然语言处理任务。目前主流的分词是基于传统的机器学习模型。近年来,随着人工智能大潮的又一次兴起,长短期记忆(LSTM)神经网络模型改进了普通循环神经网络模型无法长... 中文分词是中文自然语言处理的基础。分词质量的好坏直接影响之后的自然语言处理任务。目前主流的分词是基于传统的机器学习模型。近年来,随着人工智能大潮的又一次兴起,长短期记忆(LSTM)神经网络模型改进了普通循环神经网络模型无法长期依赖信息的缺点,被广泛应用于自然语言处理的各种任务中,并取得了不错的效果。对中文分词,该文在经典单向LSTM模型上进行改进,增加了自后向前的LSTM层,设计了双向LSTM模型,改进了单向LSTM对后文依赖性不足的缺点;并引入了贡献率α,对前传LSTM层和后传LSTM层的权重矩阵进行调节,并设计了四个实验,验证了所建模型的正确性和优越性。 展开更多
关键词 中文分词 自然语言处理 双向lstm 贡献率
在线阅读 下载PDF
基于改进经验模态分解与BiLSTM神经网络的低矮房屋脉动风压时程预测 被引量:1
4
作者 邱冶 袁有明 伞冰冰 《湖南大学学报(自然科学版)》 北大核心 2025年第3期82-93,共12页
为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态... 为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态函数,并通过样本熵对其进行重构获得子序列;其次,针对各子序列完成双向长短期记忆网络的构建、训练及预测,并利用贝叶斯优化(BO)算法对神经网络超参数进行优化;最后,基于低矮房屋风洞测压试验数据进行了风荷载预测,验证了学习模型的有效性.研究表明,与传统预测模型(多层感知器、BiLSTM)相比,基于改进经验模态分解与BiLSTM神经网络的预测模型具有较高的预测精度和计算效率,适用于高斯与非高斯风压信号预测. 展开更多
关键词 低矮房屋 风荷载 深度学习 双向lstm 改进经验模态分解 贝叶斯优化 时程预测
在线阅读 下载PDF
基于贝叶斯优化LSTM神经网络的飞机货舱火源定位
5
作者 张伟 常本强 +1 位作者 杨旭 熊枭 《北京航空航天大学学报》 北大核心 2025年第9期2979-2986,共8页
民航飞机货舱火灾多发于高空低温低压的环境,对飞机安全飞行造成了巨大的威胁。为快速定位货舱火灾源点和采取针对性区域灭火措施,提出一种基于贝叶斯优化(BO)的长短期记忆(LSTM)神经网络火源定位模型(BO-LSTM)。该模型使用LSTM神经网... 民航飞机货舱火灾多发于高空低温低压的环境,对飞机安全飞行造成了巨大的威胁。为快速定位货舱火灾源点和采取针对性区域灭火措施,提出一种基于贝叶斯优化(BO)的长短期记忆(LSTM)神经网络火源定位模型(BO-LSTM)。该模型使用LSTM神经网络充分挖掘多种火灾特征时序数据(烟雾、温度、CO浓度)与火灾源点的时空关联特性,同时采用贝叶斯算法搜寻LSTM神经网络的最优超参数组合以提高模型的鲁棒性和准确性。通过仿真研究验证BO-LSTM模型,使用Pyrosim火灾模拟软件以1∶1比例建立了8个常用民航飞机货舱模型,并在每个模型中随机选取10个火源点进行低温低压环境的火灾仿真。实验结果表明:所建模型预测火源中心点距离实际火源中心点的直线距离误差皆小于0.1m,预测火源二维坐标皆处于真实火源的范围内。贝叶斯优化过的LSTM神经网络极大提高了传统LSTM神经网络的性能,适用于低温低压状态下的飞机货舱火源定位。 展开更多
关键词 飞机货舱 低温低压 火源定位 贝叶斯优化 lstm神经网络 Pyrosim软件
在线阅读 下载PDF
基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法 被引量:2
6
作者 朱亮 李晓明 +1 位作者 纪慧 楼一珊 《西安石油大学学报(自然科学版)》 北大核心 2025年第1期39-46,64,共9页
在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM... 在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM组合模型的训练时间和预测结果与BP神经网络、支持向量机、随机森林和单一的LSTM模型进行了对比分析。结果表明:所构建的SAE-LSTM组合模型预测地层可钻性训练用时最短,预测值与实际测量值误差最小,拟合结果的均方根误差RMSE仅为0.081,平均绝对百分比误差MAPE为1.189,决定系数R^(2)为0.966,其RMSE和MAPE最小,R 2最大,较其他模型预测精度更高。该方法为地层参数预测提供了新的途径,能改善以往预测方法在处理复杂地层问题时预测效率低、预测精度不高等问题。 展开更多
关键词 深部地层钻探 岩石可钻性 预测模型 栈式自动编码器 lstm神经网络 深度学习
在线阅读 下载PDF
基于神经网络补偿的坦克全电双向稳定系统非线性滑模控制 被引量:1
7
作者 王一珉 袁树森 +1 位作者 林大睿 杨国来 《兵工学报》 北大核心 2025年第3期90-104,共15页
传统坦克双向稳定系统的控制策略难以有效处理新一代全电双向稳定系统中的耦合性、非线性和不确定性,而基于模型的非线性控制能够充分利用系统动态模型的先验信息提升控制效果。因此,建立计及执行器动态的全电双向稳定系统机电耦合动力... 传统坦克双向稳定系统的控制策略难以有效处理新一代全电双向稳定系统中的耦合性、非线性和不确定性,而基于模型的非线性控制能够充分利用系统动态模型的先验信息提升控制效果。因此,建立计及执行器动态的全电双向稳定系统机电耦合动力学模型,提出一种基于神经网络补偿的非线性滑模控制方法。引入滑模面和基于双曲正切函数改进的滑模鲁棒控制律设计非线性滑模控制函数,以有效地消除系统振荡,提高系统的稳态性能。同时,深度融合多层神经网络,准确估计系统的不确定性并进行前馈补偿,避免高增益反馈。基于Lyapunov理论严格证明了新控制策略可以实现连续控制输入下坦克全电双向稳定系统的渐近稳定性能。搭建了联合仿真环境与半实物实验平台,通过大量对比实验验证了新控制策略的优越性。 展开更多
关键词 坦克 全电双向稳定系统 滑模控制 神经网络 动力学建模 对比实验验证
在线阅读 下载PDF
基于LSTM神经网络的船舶油耗模型研究
8
作者 李智东 易文欣 +1 位作者 陆丛红 周波 《大连理工大学学报》 北大核心 2025年第4期369-375,共7页
针对船舶节能减排和提高经济效益的需求,建立了准确的船舶油耗模型,为船舶采取各种航行策略优化措施提供了决策基础.基于丹麦籍客滚轮的实测运行数据,经过数据预处理和特征选取,利用LSTM神经网络和多种机器学习算法建立了案例船的油耗模... 针对船舶节能减排和提高经济效益的需求,建立了准确的船舶油耗模型,为船舶采取各种航行策略优化措施提供了决策基础.基于丹麦籍客滚轮的实测运行数据,经过数据预处理和特征选取,利用LSTM神经网络和多种机器学习算法建立了案例船的油耗模型.将各模型对测试集和额外时间序列测试集的预测值与真实值分别进行比较,结果表明LSTM模型对两种测试集的预测误差均低于1.30%,预测精度不会出现较大波动;而其他模型对额外时间序列测试集的预测性能会下降,稳定性和预测精度均不如LSTM模型.考虑到油耗模型的预测性能和实际应用场景,基于LSTM神经网络的油耗模型具有较大的优势,对后续的船舶油耗率预测及航行策略优化都具有重要意义. 展开更多
关键词 油耗率预测 黑箱模型方法 数据预处理 lstm神经网络
在线阅读 下载PDF
基于LSTM神经网络模型的河道洪水反流向演算
9
作者 王安琪 易民 +2 位作者 赵含雪 陈璐 任金秋 《水文》 北大核心 2025年第5期29-35,共7页
河道洪水反流向演算在库群-河道联合防洪调度中具有重要作用,若直接采用马斯京根进行反向演算,存在演算结果不稳定、精度不佳等问题,难以运用于工程实际。提出一种基于LSTM神经网络模型的河道洪水反流向演算方法,建立河道上、下游断面... 河道洪水反流向演算在库群-河道联合防洪调度中具有重要作用,若直接采用马斯京根进行反向演算,存在演算结果不稳定、精度不佳等问题,难以运用于工程实际。提出一种基于LSTM神经网络模型的河道洪水反流向演算方法,建立河道上、下游断面的流量非线性映射关系模拟模型,并通过历史实测洪水资料对模型进行训练,进而实现由下游断面洪水过程反推上游断面入流过程。模型应用于汉江下游河段,结果表明,基于LSTM神经网络模型的河道洪水反流向演算方法反演结果与上游断面实际入流过程接近,相较于BP神经网络和支持向量回归方法具有更优的反演精度,证明了模型的实用性和有效性。 展开更多
关键词 河道洪水演算 反流向演算 lstm神经网络 机器学习
在线阅读 下载PDF
基于LSTM神经网络的南加州中期地震预测 被引量:1
10
作者 王艺璇 张怀 +1 位作者 石耀霖 程术 《中国科学院大学学报(中英文)》 北大核心 2025年第2期199-208,共10页
以神经网络预测地震为主题,采用长短时记忆(LSTM)神经网络构建地震预测模型。基于1932—2021年的南加州地震目录资料,数据按照0.8∶0.2的比例划分,训练集的时间窗口为1932年1月至2002年3月,测试集为2002年3月至2021年9月。模型以LSTM神... 以神经网络预测地震为主题,采用长短时记忆(LSTM)神经网络构建地震预测模型。基于1932—2021年的南加州地震目录资料,数据按照0.8∶0.2的比例划分,训练集的时间窗口为1932年1月至2002年3月,测试集为2002年3月至2021年9月。模型以LSTM神经网络为核心,综合训练集地震时间序列数据中计算出的11个反映地震时空强度分布特征的地震活动性指标,以及与之对应的最大震级构建标签,对测试集进行回溯性预测检验。利用混淆矩阵中的准确率、精确度、R评分等指标评估模型预测效果。结果显示,该模型在地震预测方面有一定的成效,成功预测出2010年4月的7.2级大地震,并且部分模型的R评分高于我国目前的中期预测水平。然而仍有部分指标未达到理想状态,还需深入探讨。 展开更多
关键词 lstm神经网络 南加州地区 地震中期预测 地震活动性指标 R评分
在线阅读 下载PDF
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
11
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 图卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
基于双向长短期记忆神经网络的三维地应力场模拟
12
作者 姚昌宇 唐潮 +4 位作者 李晓明 周文 朱新春 邓乃尔 Umair Yousaf 《成都理工大学学报(自然科学版)》 北大核心 2025年第5期986-1004,共19页
准确预测地应力场对于设计水力压裂作业至关重要,因为它直接影响裂缝扩展和总体产能效率。传统的协克里金建模方法在捕捉多种岩石力学参数与地震属性之间复杂的非线性关系时常存在不足,尤其当这些参数受到沉积环境或岩性差异的影响时,... 准确预测地应力场对于设计水力压裂作业至关重要,因为它直接影响裂缝扩展和总体产能效率。传统的协克里金建模方法在捕捉多种岩石力学参数与地震属性之间复杂的非线性关系时常存在不足,尤其当这些参数受到沉积环境或岩性差异的影响时,预测精度会降低。为了解决这些问题,本研究提出了一种基于双向长短期记忆(Bi-LSTM)神经网络的三维地应力场预测新方法。该方法通过构建三维岩石力学约束模型,并将其与有限元方法结合进行地应力场预测。对测井数据、岩石力学参数和地震属性进行预处理,并训练Bi-LSTM模型,以更好地捕捉这些参数之间的复杂空间相关性。由Bi-LSTM模型生成的三维约束体作为协克里金方法.中的次级变量,构建综合岩石力学模型,然后在有限元框架下进行三维地应力场模拟。结果显示,与传统循环神经网络方法相比,该方法在预测精度和可靠性方面有显著提高,平均绝对误差减少超过80%,拟合精度提高了7%以上。最大水平应力、最小水平应力和应力方向的平均预测误差分别为2.29%,2.19%和7.97%。结果表明,本研究所提出的方法不仅提高了地应力场预测的准确性,还为机器学习方法在地应力场模拟中的应用提供了新的参考,有望更有效地推动水力压裂设计的发展。 展开更多
关键词 现今地应力场模拟 测井解释 双向长短期记忆神经网络 协克里金方法 机器学习
在线阅读 下载PDF
基于神经网络模型的煤层气产能预测研究 被引量:1
13
作者 金毅 郑晨晖 +5 位作者 宋慧波 马家恒 杨运航 刘顺喜 张昆 倪小明 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期46-56,共11页
目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展... 目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展煤层气产能预测。首先,利用灰色关联分析法遴选出10个地质参数作为煤层气产能预测的主控因素,在此基础上,运用模糊数学法实现研究区34口煤层气井富集区划分,最后,根据分类结果,结合实际排采数据,分别利用BP(back propagation)和LSTM(long short-term memory)神经网络算法实现煤层气井日产气量预测。结果结果表明:(1)渗透率、含气饱和度和储层压力梯度等10个参数是影响研究区煤层气产气性能的关键因素;(2)利用模糊数学评价方法评价煤层气的富集,可将研究区34口井产气效果划分为有利区、较有利区和不利区;(3)依托LSTM算法建立了煤储层日产气量预测模型,预测误差值为4.06%~14.79%,平均误差值为11.09%,预测精度明显高于BP神经网络模型,结论根据LSTM算法建立的煤储层日产气量预测模型稳定性好且预测精度高,可作为煤储层产能长程预测的一种有效手段,进而为煤层气开发工艺布施与排采方案制定提供科学依据。 展开更多
关键词 lstm神经网络 BP神经网络 灰色关联分析 产能预测
在线阅读 下载PDF
基于LSTM神经网络的Dst指数预报方法
14
作者 李绍文 牛俊 +2 位作者 梅冰 姚俐竹 李炎斌 《空间科学学报》 北大核心 2025年第3期641-652,共12页
Dst指数是当前使用较广泛的用于反映磁暴过程的小时地磁指数,对Dst指数的预报是现代空间天气学主要研究内容之一.基于LSTM神经网络方法,利用2008-2022年的太阳风参数和Dst指数建立Dst指数预报模型,分别为使用全时域数据建模的LSTM模型... Dst指数是当前使用较广泛的用于反映磁暴过程的小时地磁指数,对Dst指数的预报是现代空间天气学主要研究内容之一.基于LSTM神经网络方法,利用2008-2022年的太阳风参数和Dst指数建立Dst指数预报模型,分别为使用全时域数据建模的LSTM模型和仅使用磁暴期间数据建模的Storm模型.使用LSTM模型对2001-2002年间的Dst指数进行滚动预报,预报结果显示该模型对提前1~6 h的Dst指数预报相关系数达到0.94以上,均方根误差在11 nT以内. Storm模型能够较好地解决LSTM模型在磁暴(尤其是强磁暴, Dst<–100 nT)主相期间预报误差较大的问题,对2001-2002年期间的23次强磁暴事件预报结果表明, Storm模型对磁暴期间提前6 h的预报结果相关系数较LSTM模型由0.902提升至0.948.综合两个预报模型组成的LSTMStorm模型对Dst指数的预报结果相关系数在0.95以上,均方根误差在9 nT以内,相比单LSTM模型的预报精度有显著提升. 展开更多
关键词 Dst指数预报 lstm神经网络 预报模型 lstm-Storm模型
在线阅读 下载PDF
运用LSTM神经网络模型开展浙南海域东海原甲藻赤潮预测的初步实践
15
作者 刘亚林 孙国平 +2 位作者 马志凯 邱进坤 梁连松 《海洋预报》 北大核心 2025年第4期118-125,共8页
为进一步提高东海原甲藻赤潮预测预警的科学化水平,利用长短期记忆(LSTM)神经网络模型开展了对东海原甲藻赤潮发生期间叶绿素a的动态预测。对浙南海域近5年东海原甲藻赤潮发生期间自动观测数据中的叶绿素a数据集进行训练和机器学习,并对... 为进一步提高东海原甲藻赤潮预测预警的科学化水平,利用长短期记忆(LSTM)神经网络模型开展了对东海原甲藻赤潮发生期间叶绿素a的动态预测。对浙南海域近5年东海原甲藻赤潮发生期间自动观测数据中的叶绿素a数据集进行训练和机器学习,并对2021年的叶绿素a值进行小时级别和日最大值预测,并与实际观测数据进行比对验证。结果表明:经过训练和机器学习后的预测结果较好,可以较好地预测叶绿素a的变化趋势,预测结果的相关系数R^(2)分别为0.76和0.88。 展开更多
关键词 东海原甲藻 lstm神经网络 机器学习 赤潮预测 浙南海域
在线阅读 下载PDF
基于多特征注意力双向循环神经网络的客观题难度预测模型
16
作者 王煜焜 徐行健 +1 位作者 孟繁军 宋慧媛 《计算机工程》 北大核心 2025年第10期130-139,共10页
由于大多数试题难度预测方案是劳动密集型的,耗时且容易泄漏,或者在某种程度上是主观的,严重影响智能化教育评价体系的进步发展,因此,利用神经网络实现试题难度自动预测具有重要意义。提出一种基于多特征注意力的双向循环神经网络模型(M... 由于大多数试题难度预测方案是劳动密集型的,耗时且容易泄漏,或者在某种程度上是主观的,严重影响智能化教育评价体系的进步发展,因此,利用神经网络实现试题难度自动预测具有重要意义。提出一种基于多特征注意力的双向循环神经网络模型(M-ABRNN)。该模型首先基于多特征任务学习方法,通过检索计算机关联知识以丰富题干信息;其次通过双向循环神经网络挖掘客观题文本数据的逻辑关系并提取语句表征,并利用注意力机制度量关联语句对试题的重要程度;最后将获取的特征输入到模型中进行训练,训练完后模型可以自动预测每个新试题的难度。在大学计算机基础课程数据集上的实验结果表明,所提模型的皮尔逊相关系数(PCC)和一致性(DOA)均有显著提升,可见该模型能够有效地对客观题难度进行预测,实现题目难度的自动化评测。 展开更多
关键词 教育大数据 多任务特征 客观题难度预测 双向循环神经网络 注意力机制
在线阅读 下载PDF
基于卷积神经网络和双向长短期记忆网络的微地震记录去噪方法
17
作者 王泰然 鲍逸非 《北京大学学报(自然科学版)》 北大核心 2025年第3期487-500,共14页
提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模... 提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模拟含噪声数据集.通过深度学习网络的训练,获得性能稳定且泛化能力强的去噪模型,该模型在验证集上也表现优异.与传统去噪方法相比,所提方法的去噪效果显著提升,能够更好地保留信号的细节特征和频谱特征.将该模型应用于自贡和内江地区的实际微震观测数据,结果表明能有效地去除实测数据中的噪声. 展开更多
关键词 微小地震 噪声去除 卷积神经网络(CNN) 双向长短期记忆网络(Bilstm) 深度学习
在线阅读 下载PDF
基于VMD和神经网络LSTM的溶解氧水质预测
18
作者 金志浩 《绿色科技》 2025年第6期148-151,共4页
水质预测是水污染防治的重要组成部分,本文选取上海某区水质自动监测站点的溶解氧水质指标,并结合水文和气象数据进行水质的精确预测。构建LSTM模型和VMD-LSTM模型,采用变分模态分解(VMD)对水质数据进行去噪处理,并通过均方误差(MSE)和... 水质预测是水污染防治的重要组成部分,本文选取上海某区水质自动监测站点的溶解氧水质指标,并结合水文和气象数据进行水质的精确预测。构建LSTM模型和VMD-LSTM模型,采用变分模态分解(VMD)对水质数据进行去噪处理,并通过均方误差(MSE)和决定系数(R 2)指标对两模型的预测效果进行评价。结果表明:相较于LSTM模型,VMD-LSTM模型具有更低的MSE值和更高的R 2值。经VMD降噪后MSE值降低了35.6%,而R 2值提升了2.2%,且真实值与预测值曲线更为贴近,说明VMD-LSTM模型对水中溶解氧的预测准确度更佳。 展开更多
关键词 水质预测 神经网络 VMD lstm
在线阅读 下载PDF
基于LSTM神经网络家居企业财税风险预警研究
19
作者 黄晖兴 《森林防火》 2025年第2期134-143,共10页
鉴于我国房地产调控政策深入实施及国际环境变化,家居行业财务风险显著提升。为有效防控家居行业财税风险,确保家居企业保持稳定持续发展,构建了基于因子分析法和LSTM神经网络模型财税风险测度模式,并对2011—2023年间77家上市家居企业... 鉴于我国房地产调控政策深入实施及国际环境变化,家居行业财务风险显著提升。为有效防控家居行业财税风险,确保家居企业保持稳定持续发展,构建了基于因子分析法和LSTM神经网络模型财税风险测度模式,并对2011—2023年间77家上市家居企业进行了实证测度。结果表明:因子分析法开展家居企业财税风险测度具有科学性和可行性,所构建LSTM神经网络模型能准确地进行风险评估,近年来家居行业受到内外部环境影响面临较高财税风险;最后提出切实防范和化解风险三项建议。 展开更多
关键词 lstm神经网络 因子分析法 家居企业 财税风险模型 风险测度
在线阅读 下载PDF
神经网络在常用标准件理论应力集中系数中的预测研究 被引量:1
20
作者 王思齐 蒋玮 董长帅 《机械设计与制造》 北大核心 2025年第9期23-27,共5页
针对过往理论应力集中系数计算和应用的繁杂性,采用神经网络技术对常用标准件的理论应力集中系数进行预测,建立了形状特征、载荷和应力集中系数之间的数学关系,从而获得应力集中系数的显性表达式。在这个基础上,根据对训练数据集的预处... 针对过往理论应力集中系数计算和应用的繁杂性,采用神经网络技术对常用标准件的理论应力集中系数进行预测,建立了形状特征、载荷和应力集中系数之间的数学关系,从而获得应力集中系数的显性表达式。在这个基础上,根据对训练数据集的预处理以及神经网络的分组,选择BP神经网络,循环神经网络(RNN),长短期记忆(LSTM)神经网络等不同的神经网络算法进行对比。结果表明,RNN和LSTM神经网络对理论应力集中系数的预测是可行的,并且LSTM神经网络获得更好的预测效果。 展开更多
关键词 局部应力集中 理论应力集中系数 BP神经网络 循环神经网络 lstm 超参数
在线阅读 下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部