期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于特征优化和混合改进灰狼算法优化BiLSTM网络的短期光伏功率预测 被引量:2
1
作者 赵如意 王晓辉 +3 位作者 郑碧煌 李道兴 高毅 郭鹏天 《电网技术》 北大核心 2025年第1期209-222,I0080-I0084,共19页
为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首... 为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首先,运用互信息算法进行输入数据的变量选择,以消除冗余变量。其次,通过互补集合经验模态分解和改进的小波阈值算法对筛选后的数据进行特征重构,旨在降低数据中的噪声干扰并完成输入变量的特征优化。随后,结合改进的Tent混沌映射、非线性递减因子、动态权重策略和差分进化算法对标准灰狼优化算法进行混合优化,以确定双向长短期记忆神经网络的最优超参数组合,并引入注意力机制以挖掘数据中的关键时序信息,最终构建出一种新型的短期光伏功率预测模型。仿真实验表明,相较于最小二乘支持向量机、长短期记忆网络和双向长短期记忆网络,所提模型在晴天、多云、阴天和降雨等不同工况下的均方根误差平均分别降低了12.45%、7.95%和5.37%,显示出优秀的预测性能、良好的泛化能力和潜在的工程应用价值。 展开更多
关键词 变量选择 互补集合经验模态分解 特征重构 混合改进优化灰狼算法 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于分群游走机制的灰狼优化算法的FPRM逻辑电路面积优化
2
作者 曹新龙 何振学 +4 位作者 王伊瑾 赵晓君 张艳 肖利民 王翔 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期521-527,共7页
针对基于XNOR/OR的固定极性Reed-Muller电路(FPRM)逻辑电路面积优化方法搜索最优解速度较慢,易陷入局部最优等问题,提出一种新的FPRM逻辑电路面积优化方法,利用基于分群游走机制的灰狼优化算法(GDGWO)搜索电路面积最小的FPRM电路.GDGWO... 针对基于XNOR/OR的固定极性Reed-Muller电路(FPRM)逻辑电路面积优化方法搜索最优解速度较慢,易陷入局部最优等问题,提出一种新的FPRM逻辑电路面积优化方法,利用基于分群游走机制的灰狼优化算法(GDGWO)搜索电路面积最小的FPRM电路.GDGWO在初始化种群后,采取“轮盘赌”选择算法选出合适的新群体头狼,以提高种群多样性;执行种群分裂机制,防止因原始种群陷入局部最优而降低算法的鲁棒性;在分群搜索开发过程中引入改进后的随机游走策略,使灰狼种群能够更快地包围猎物,提高算法的收敛速度.基于北卡罗来纳微电子中心Benchmark测试电路的实验结果表明,GDGWO与粒子群算法相比,电路面积优化率提升57.42%;与黑猩猩算法相比,提升41.94%;与原始灰狼优化算法相比,提升43.68%. 展开更多
关键词 固定极性Reed-Muller电路 面积优化 灰狼算法 分群机制 随机游走
在线阅读 下载PDF
基于随机收敛因子和差分变异的改进灰狼优化算法 被引量:10
3
作者 徐松金 龙文 《科学技术与工程》 北大核心 2018年第23期252-256,共5页
针对基本灰狼优化算法在求解高维复杂优化问题时存在解精度低和易陷入局部最优的缺点,提出一种改进的灰狼优化算法。受粒子群优化算法的启发,设计一种收敛因子a随机动态调整策略以协调算法的全局勘探和局部开采能力;为了增强种群多样性... 针对基本灰狼优化算法在求解高维复杂优化问题时存在解精度低和易陷入局部最优的缺点,提出一种改进的灰狼优化算法。受粒子群优化算法的启发,设计一种收敛因子a随机动态调整策略以协调算法的全局勘探和局部开采能力;为了增强种群多样性和降低算法陷入局部最优的概率,受差分进化算法的启发,构建一种随机差分变异策略产生新个体。选取6个标准测试函数进行仿真实验。结果表明:在相同的适应度函数评价次数条件下,此算法在求解精度和收敛速度上均优于其他算法。 展开更多
关键词 灰狼优化算法 收敛因子 差分变异 随机 全局优化
在线阅读 下载PDF
基于停滞检测的双向搜索灰狼优化算法 被引量:10
4
作者 张大明 徐嘉庆 +1 位作者 赵彦清 丁俊杰 《计算机应用研究》 CSCD 北大核心 2022年第6期1725-1730,共6页
针对灰狼优化算法(GWO)易陷入局部最优、收敛速度低的问题,提出了一种基于停滞检测的双向搜索灰狼优化算法(DBGWO)。为了提升初始种群的质量,引入了Bernoulli shift映射;为了充分利用GWO特有的头狼机制,实现整体提升算法性能的目的,提... 针对灰狼优化算法(GWO)易陷入局部最优、收敛速度低的问题,提出了一种基于停滞检测的双向搜索灰狼优化算法(DBGWO)。为了提升初始种群的质量,引入了Bernoulli shift映射;为了充分利用GWO特有的头狼机制,实现整体提升算法性能的目的,提出一种双向搜索策略;为了提升算法跳出局部最优的能力、增加算法的收敛速度,提出一种停滞检测机制,针对算法是否有陷入局部最优风险的判断,狼群会采取相应的措施改变当前状态。通过对23个基准测试函数进行仿真实验结果表明,所提算法在求解多峰函数问题上效果显著,同时在求解最优解非0点的函数问题上表现也较为优越。将该算法用于求解多阈值图像分割问题,解决了用Kapur熵法计算多阈值时耗时过长的问题。 展开更多
关键词 灰狼优化算法 双向搜索 停滞检测 Kapur熵
在线阅读 下载PDF
贪婪随机自适应灰狼优化算法求解TSP问题 被引量:7
5
作者 高珊 孟亮 《现代电子技术》 北大核心 2019年第14期46-50,54,共6页
对于求解TSP问题,提出一种贪婪随机自适应灰狼优化算法(GRAGWO)。GRAGWO算法基于贪婪随机自适应搜索算法(G RASP),采用其构造阶段生成初始解,在局部搜索阶段采用灰狼优化算法(GWO)对结果进行优化。GWO算法不能直接用于求解离散问题,易... 对于求解TSP问题,提出一种贪婪随机自适应灰狼优化算法(GRAGWO)。GRAGWO算法基于贪婪随机自适应搜索算法(G RASP),采用其构造阶段生成初始解,在局部搜索阶段采用灰狼优化算法(GWO)对结果进行优化。GWO算法不能直接用于求解离散问题,易陷入局部最优,导致后期收敛速率较低。根据TSP问题的特性,针对易形成局部最优路径和随着迭代次数增进而导致种群多样性减退这两个缺陷,重新定义灰狼编码方式,与GRASP启发式算法相结合,应用于求解TSP问题。采用TSPLIB中的多组不同规模的TSP问题作为实验用例,并将GRAGWO算法与其他仿生算法进行对比,结果表明在求解准确率、稳定性和解决大型城市问题方面具有相对优势。 展开更多
关键词 GRAGWO算法 贪婪随机自适应算法 灰狼优化算法 群体智能 旅行商问题 组合优化
在线阅读 下载PDF
一类带有随机参数的交通优化模型及遗传算法 被引量:3
6
作者 牛惠民 《系统工程学报》 CSCD 2002年第2期103-108,共6页
双向编组站包含两个独立的作业系统 ,确定最合理的系统分工方案是这类编组站必须解决的首要问题 ,车流量则是该问题重要的输入参数 .在实际运输工作中 ,车流量随着时间的不同总要发生一定的波动变化 ,这必然会影响双向编组站系统分工方... 双向编组站包含两个独立的作业系统 ,确定最合理的系统分工方案是这类编组站必须解决的首要问题 ,车流量则是该问题重要的输入参数 .在实际运输工作中 ,车流量随着时间的不同总要发生一定的波动变化 ,这必然会影响双向编组站系统分工方案 ,针对这一交通运输学科经常面临的情况 ,构造了车流波动条件下双向编组站系统作业分工的随机优化模型 ,建立了基于遗传算法的求解理论 。 展开更多
关键词 双向编组站 随机参数 随机优化 遗传算法 交通优化模型 车流组织 铁路运输
在线阅读 下载PDF
基于BWO优化VMD和TCN-BiGRU的短期风电功率预测
7
作者 逯静 张燕茹 王瑞 《工程科学与技术》 北大核心 2025年第3期31-41,共11页
针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于... 针对风力发电过程中出现的不平稳、波动性大等特点,为了更好地提高风力发电的预测精度,提出一种基于白鲸优化算法(BWO)的变分模态分解(VMD)和时序卷积网络(TCN)-双向门控循环单元(BiGRU)联合构建的短期风力发电功率预测模型。首先,由于风电功率受多方面气象因素的共同影响,采用随机森林(RF)方法来确定气象因素特征的重要性,对特征进行排序并提取出最优的特征。其次,利用VMD将原始功率数据由不平稳序列分解成较平稳的子序列,为解决VMD的两个参数即模态数和惩罚因子难以人工确定的问题,使用BWO对VMD的参数进行寻优,利用优化后的VMD对非平稳电力信号进行有效分解。然后,将分解后的各平稳子序列加上提取出的最优特征进行TCN-BiGRU组合模型预测。最后,将各子序列的预测值进行叠加得到最终的结果。以中国的某风电场的实际数据为例,通过多种单一模型与组合模型对所提出的预测模型进行了仿真对比。仿真结果表明,所提出的基于BWO优化VMD和TCN-BiGRU联合预测方法具有较高的预测精度,其均方根误差、平均绝对误差及平均百分比误差的指标精度均比其他模型有所提高。本文方法在风电功率预测中具有显著优势。 展开更多
关键词 短期风功率预测 变分模态分解 随机森林 时序卷积网络 双向门控循环单元 白鲸优化算法
在线阅读 下载PDF
基于灰狼算术混合优化算法的类集成测试序列生成方法 被引量:2
8
作者 张文宁 周清雷 +1 位作者 焦重阳 徐婷 《计算机科学》 CSCD 北大核心 2023年第5期72-81,共10页
集成测试是软件测试的重要环节,如何决定类的集成顺序是面向对象集成测试难解决的问题之一。已有研究成果证实了基于搜索的类集成测试序列生成方法的有效性,但存在收敛速度慢、寻优精度低的问题。灰狼优化算法(Grey Wolf Optimizer, GWO... 集成测试是软件测试的重要环节,如何决定类的集成顺序是面向对象集成测试难解决的问题之一。已有研究成果证实了基于搜索的类集成测试序列生成方法的有效性,但存在收敛速度慢、寻优精度低的问题。灰狼优化算法(Grey Wolf Optimizer, GWO)中狼群易聚集在相近的区域,易早熟收敛。算术优化算法(Arithmetic Optimization Algorithm, AOA)是新近提出的元启发式优化算法,具有良好的随机性及分散性。为此,提出了一种灰狼优化算法和算术优化算法的混合优化算法(GWO-AOA)。GWO-AOA保留GWO的位置更新策略,选用群体领导层的中心个体替换AOA的引导个体,以平衡算法的全局探索和局部开发能力,进一步引入随机游动的精英变异机制,提高算法整体的寻优精度。实验结果表明,GWO-AOA相比同类方法能用较短的时间生成测试桩代价较低的类集成测试序列,收敛速度较快。 展开更多
关键词 集成测试 类集成测试序列 灰狼优化算法 算术优化算法 混合优化 随机游动
在线阅读 下载PDF
基于改进灰狼算法优化SVR的混凝土中钢筋直径检测方法 被引量:15
9
作者 卢纯义 于津 +3 位作者 余忠东 丁双松 张占龙 裘科成 《计算机科学》 CSCD 北大核心 2022年第11期228-233,共6页
传统钢筋混凝土检测方法通过线性拟合或标准值查表法只能对钢筋直径做大致估算,无法精确测量。针对钢筋直径检测中样本数据较少、检测结果受到钢筋埋深及相邻钢筋间距的影响而非表现出非线性回归变化的情况,提出了基于改进灰狼算法(Impr... 传统钢筋混凝土检测方法通过线性拟合或标准值查表法只能对钢筋直径做大致估算,无法精确测量。针对钢筋直径检测中样本数据较少、检测结果受到钢筋埋深及相邻钢筋间距的影响而非表现出非线性回归变化的情况,提出了基于改进灰狼算法(Improved Grey Wolf Optimizer,IGWO)优化的支持向量回归机(Support Vector Regression,SVR)检测方法(IGWO-SVR)。首先,通过反向学习策略优化初始化种群分布,改善了灰狼优化算法(Grey Wolf Optimizer,GWO)的全局搜索能力,通过随机差分变异策略扩大狼群动态搜索范围,避免了灰狼优化算法陷入局部最优;然后,将改进后的灰狼优化算法应用于支持向量回归机的核心参数寻优,以改良算法模型的检测性能;最后,与另外3种算法模型的实验结果进行对比分析,结果表明了所提方法在钢筋直径检测中的精度以及优化模型与实际值的拟合度都得到了有效提升。 展开更多
关键词 钢筋直径 灰狼优化算法 支持向量回归机 反向学习策略 随机差分变异策略
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:1
10
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(GWO)算法 卷积神经网络(CNN) 双向长短期记忆(BiLSTM)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于双权重因子的改进鲶鱼效应灰狼优化算法 被引量:7
11
作者 刘成汉 何庆 +1 位作者 杜逆索 陈俊 《小型微型计算机系统》 CSCD 北大核心 2022年第2期320-327,共8页
针对GWO算法易早熟收敛、寻优速度和精度不高等问题,提出一种基于双权重因子的改进鲶鱼效应灰狼优化算法(IGWO).首先,采用Logistic混沌映射初始化灰狼种群,提高种群初始化位置的质量;然后针对头狼扰动和个体搜寻步长引入两种不同的权重... 针对GWO算法易早熟收敛、寻优速度和精度不高等问题,提出一种基于双权重因子的改进鲶鱼效应灰狼优化算法(IGWO).首先,采用Logistic混沌映射初始化灰狼种群,提高种群初始化位置的质量;然后针对头狼扰动和个体搜寻步长引入两种不同的权重因子,用来平衡算法局部开发和全局搜索能力;最后引入改进的鲶鱼效应策略,保证种群活力,进一步提高算法收敛精度,避免算法陷入局部最优解.仿真结果采用10个标准测试函数与其他智能优化算法进行低维和高维寻优对比,并与其他改进灰狼优化算法进行对比,结果表明,改进的灰狼优化算法具有较高的鲁棒性. 展开更多
关键词 灰狼优化算法 LOGISTIC混沌映射 自适应随机权重 鲶鱼效应
在线阅读 下载PDF
动态反向搜索更新位置的改进灰狼优化算法 被引量:7
12
作者 王梦璐 李连忠 《计算机工程与应用》 CSCD 北大核心 2021年第18期86-96,共11页
针对灰狼优化算法(GWO)后期收敛速度慢、易陷入局部最优等问题,提出一种动态反向搜索更新位置的改进灰狼优化算法(DAGWO)。该算法在原始的位置更新公式中引入个体历史最优位置引导策略,以加快算法的收敛速度;同时,引入反向搜索因子,该... 针对灰狼优化算法(GWO)后期收敛速度慢、易陷入局部最优等问题,提出一种动态反向搜索更新位置的改进灰狼优化算法(DAGWO)。该算法在原始的位置更新公式中引入个体历史最优位置引导策略,以加快算法的收敛速度;同时,引入反向搜索因子,该因子依据种群早熟判别指标动态调节自身取值,在算法陷入局部极值时令灰狼个体向整个种群中最差个体方向进行反向搜索,以提高种群跳出局部极值的能力。此外,构造了一种新型局部扰动的非线性收敛因子a,以平衡算法的全局和局部搜索能力。对20个经典测试函数进行仿真实验,结果表明在求解精度、收敛速度和算法的稳定性上,DAGWO算法与标准智能优化算法和其他相关改进算法相比更有优越性。 展开更多
关键词 改进灰狼优化算法 个体历史最优位置 早熟判别指标 反向搜索因子 beta随机调整数
在线阅读 下载PDF
融合麻雀搜索和随机差分的双向学习平衡优化器算法
13
作者 侯新宇 鲁海燕 +2 位作者 卢梦蝶 徐杰 赵金金 《计算机科学》 北大核心 2023年第11期248-258,共11页
针对平衡优化器算法(Equilibrium Optimizer,EO)求解精度低、收敛速度慢等问题,提出一种融合麻雀搜索和随机差分的双向学习平衡优化器算法。首先,给出了基于麻雀搜索算法的自适应种群划分策略,以平衡算法的全局探索和局部勘探,从而提高... 针对平衡优化器算法(Equilibrium Optimizer,EO)求解精度低、收敛速度慢等问题,提出一种融合麻雀搜索和随机差分的双向学习平衡优化器算法。首先,给出了基于麻雀搜索算法的自适应种群划分策略,以平衡算法的全局探索和局部勘探,从而提高算法的收敛精度和收敛速度。其次,引入随机差分策略来重建平衡池,增加个体之间的信息交流,以利于算法跳出局部最优。最后,设计了一种双向混沌反向学习策略并将其应用到更新后的种群,以增加种群多样性,从而进一步提高算法的收敛精度。通过14个测试函数进行仿真实验,使用Wilcoxon秩和检验以及平均绝对误差来评价算法性能,并将改进算法应用到两个工程设计问题,实验结果验证了3种改进策略的有效性,且改进算法的收敛精度、收敛速度和鲁棒性都有显著提高。 展开更多
关键词 平衡优化算法 双向混沌反向学习 算法融合 随机差分 群智能优化算法
在线阅读 下载PDF
采煤机滚筒工作性能优化研究 被引量:5
14
作者 王宏伟 郭军军 +3 位作者 梁威 耿毅德 陶磊 李进 《工矿自动化》 CSCD 北大核心 2024年第4期133-143,共11页
在实际生产中,截割破碎过程是多作用耦合的结果,离散元法(DEM)与多体动力学(MBD)双向耦合技术可实现煤机设备与煤壁的信息交互,符合实际生产情况,具有较大的优越性。为提高采煤机滚筒的工作性能,基于DEM−MBD双向耦合机理,结合力学性能... 在实际生产中,截割破碎过程是多作用耦合的结果,离散元法(DEM)与多体动力学(MBD)双向耦合技术可实现煤机设备与煤壁的信息交互,符合实际生产情况,具有较大的优越性。为提高采煤机滚筒的工作性能,基于DEM−MBD双向耦合机理,结合力学性能试验和模拟试验得到实际工况参数,采用仿真软件EDEM和RecurDyn建立了采煤机滚筒截割煤壁的双向耦合模型,对仿真过程中滚筒所受的转矩和截割力进行分析,证明耦合效果和截割效果较好。设计了单因素试验和正交试验,分析了滚筒运行参数对工作性能的影响规律,并利用SPSS软件得到滚筒转速、截割深度、牵引速度对截割比能耗、装煤率、载荷波动系数的影响程度,通过现场试验验证了模型的可行性。构建了以滚筒转速、截割深度、牵引速度为决策变量,以截割比能耗、装煤率和载荷波动系数为目标的多目标优化模型,利用改进多目标灰狼(MOGWO)算法和优劣解距离法(TOPSIS)对模型进行求解,得出当滚筒转速为31.12 r/min、截割深度为639.4 mm、牵引速度为5.58 m/min时,采煤机滚筒的工作性能最优,此时截割比能耗为0.4677 kW·h/^(3),装煤率为43.01%,载荷波动系数为0.3278。 展开更多
关键词 采煤机滚筒 双向耦合机理 离散元法 多体动力学 多目标优化 改进多目标灰狼优化算法 优劣解距离法
在线阅读 下载PDF
基于BRGWO算法和滤波Smith预估器的气弹系统时滞控制 被引量:2
15
作者 李迺璐 范瑞杰 +1 位作者 骆紫薇 曹智广 《振动与冲击》 EI CSCD 北大核心 2023年第4期219-228,共10页
气弹控制系统的驱动器、闭环信号回路在实际中会存在时滞环节,由于气弹敏感性和环境复杂性,时滞会引起控制信号迟延并导致气弹控制极速恶化、甚至造成系统失稳,该问题以往研究较少。针对翼型时滞气弹控制问题,设计了一种基于BRGWO算法... 气弹控制系统的驱动器、闭环信号回路在实际中会存在时滞环节,由于气弹敏感性和环境复杂性,时滞会引起控制信号迟延并导致气弹控制极速恶化、甚至造成系统失稳,该问题以往研究较少。针对翼型时滞气弹控制问题,设计了一种基于BRGWO算法和改进型滤波Smith的最优气弹控制方法。首先,引入二阶滤波器改进Smith预估器,设计了翼型气弹控制器;然后,创新设计了一种双向随机灰狼优化算法(bidirectional random grey wolf optimization, BGWO),提高了时滞下气弹控制参数的全局寻优能力,该算法改进了不同等级灰狼的狩猎策略,提高跳出非理想值机率、避免陷入局部最优。利用最小增益原理,在理论上证明了闭环系统稳定性。仿真结果表明,对比传统智能优化算法(如遗传算法、灰狼优化算法)和多种已有控制器(经典Smith、PI-PD型Smith和传统滤波Smith预估器),该方法具有更强的时滞补偿能力和更优的气弹控制性能,在不确定时滞、不确定风速、刚度变化和驱动干扰等算例下,保持了优良的时滞气弹控制效果,具有较强的鲁棒性。 展开更多
关键词 气弹系统 时滞控制 滤波Smith预估器 双向随机灰狼优化算法(brgwo) 多工况
在线阅读 下载PDF
改进双向长短期记忆神经网络的瓦斯涌出量预测 被引量:3
16
作者 祁云 白晨浩 +3 位作者 代连朋 汪伟 薛凯隆 崔欣超 《安全与环境学报》 CAS CSCD 北大核心 2024年第12期4630-4637,共8页
为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM... 为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)的组合模型预测瓦斯涌出量。首先,运用主成分分析法(Principal Components Analysis,PCA)处理瓦斯涌出影响因素,降低数据维度,以减少模型计算时的负担;其次,利用GWO优化BiLSTM模型的学习率(best_lr)、隐藏层层数(best_hd)以及正则化系数(best_l2),可有效避免局部最优解问题,并采用决定系数(R-Square,R^(2))、均方根误差(Root Mean Square Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)对所建模型预测的结果进行综合评价分析;最后,将该模型应用于内蒙古自治区某矿回采工作面预测瓦斯涌出量。结果显示:PCA GWO BiLSTM组合模型相比于长短期记忆神经网络(Long Short-Term Memory,LSTM)和双向长短期记忆神经网络对应的单一模型,其MAE分别降低20.81%、30.17%,RMSE分别降低0.063、0.142,R^(2)则分别提高了0.023、0.075,表明该模型在复杂因素条件下具有更高的精准度、泛化性和鲁棒性。 展开更多
关键词 安全工程 瓦斯涌出 灰狼优化算法 双向长短期记忆神经网络 主成分分析法
在线阅读 下载PDF
PCA+GWO集成特征选择和模型堆叠的客户流失预测
17
作者 刘梅 郑立君 +1 位作者 段永良 段红秀 《计算机工程与应用》 北大核心 2025年第15期329-342,共14页
客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法... 客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法,并用模型堆叠构建了客户流失预测模型。提出了利用Pearson系数和随机森林(RF)的特征重要性来确定需要降维特征组的方法。改进了灰狼优化算法(GWO)中的灰狼位置更新机制和收敛条件,并将其应用于选择最佳特征子集的过程中。选取了10种不同的机器学习模型进行训练,挑选出F1-score表现最优的模型作为基模型,进行元模型训练。实验结果表明,使用某酒店客户信息数据集时,改进后的GWO算法收敛速度显著提升,且预测模型的F1-score达到了97.9%,该模型具有较强的泛化能力。 展开更多
关键词 特征选择 随机森林(RF) 主成分分析(PCA) 灰狼优化(GWO)算法 模型堆叠
在线阅读 下载PDF
基于单稳态随机共振的冲击信号自适应检测方法研究 被引量:2
18
作者 王洪涛 王奉涛 +3 位作者 薛宇航 邓刚 李宏坤 韩清凯 《机电工程》 CAS 北大核心 2019年第9期913-918,共6页
针对强背景噪声环境下微弱故障冲击信号特征提取困难等问题,对单稳态随机共振系统和衡量指标等方面进行了研究,对低速回转支承的故障诊断策略进行了分析,提出了一种基于单稳态随机共振的冲击信号自适应检测方法。考虑到系统参数的关联性... 针对强背景噪声环境下微弱故障冲击信号特征提取困难等问题,对单稳态随机共振系统和衡量指标等方面进行了研究,对低速回转支承的故障诊断策略进行了分析,提出了一种基于单稳态随机共振的冲击信号自适应检测方法。考虑到系统参数的关联性,利用灰狼优化算法(GWO)对系统的多个参数进行了优化,实现了系统参数间的同步优化过程;并以加权负熵指标作为GWO的适应度函数,对仿真冲击信号和低速回转支承振动信号进行了状态监测与故障分析。研究结果表明:该系统方法简单易行、收敛速度快、参数优化效果理想,能够在强背景噪声环境下,有效地利用噪声能量来增强微弱故障信号,凸显仿真冲击信号的特性;能准确地诊断出低速回转支承故障模式,在工程实际中具有良好的工程应用前景。 展开更多
关键词 单稳态随机共振 冲击信号 自适应 加权负熵指标 灰狼优化算法
在线阅读 下载PDF
考虑特征选择的短期光伏功率组合预测模型 被引量:3
19
作者 张赟宁 魏广军 《电力系统及其自动化学报》 CSCD 北大核心 2024年第8期122-132,共11页
针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regr... 针对光伏功率预测中特征因素太多、关键特征与功率间映射关系难以有效挖掘和预测精度不高的问题,提出一种基于随机森林RF(random forest)算法特征选择和灰狼优化算法GWO(grey wolf optimizer)优化高斯过程回归GPR(Gaussian process regression)模型相结合的组合预测模型。首先,采用皮尔逊和斯皮尔曼相关系数对特征进行相关性分析,并进行初步筛选;接着,基于随机森林算法对特征进行重要性评价,并选取最优特征子集;然后,采用灰狼优化算法对高斯过程回归模型进行优化;最后,将最优特征子集输入到组合预测模型RFGWO-GPR中进行短期光伏功率预测。应用某光伏电站实测数据的仿真实验结果表明,提出的模型在不同天气条件下可以对特征进行有效选择,与未进行特征选择的单一模型相比,预测精度显著提高,并且明显优于其他优化算法与GPR模型组成的组合预测模型。 展开更多
关键词 光伏功率预测 特征选择 随机森林算法 灰狼优化算法 高斯过程回归
在线阅读 下载PDF
基于RF-WOA-VMD-BiGRU-Attention的神经网络模型在海浪预测中的应用 被引量:2
20
作者 李练兵 张燕亮 +3 位作者 吴伟强 魏玉憧 李佳根 卢盛欣 《科学技术与工程》 北大核心 2024年第7期2638-2646,共9页
海上风电场的海况数据极其复杂导致用于海浪高度预测的输入参数极其不稳定,筛选出关键信息,提高输入参数的质量可以极大地提高海浪高度预测的准确性。以乐亭菩提岛风电场近一年的海上数据为基础,构建了一种基于随机森林(random forest, ... 海上风电场的海况数据极其复杂导致用于海浪高度预测的输入参数极其不稳定,筛选出关键信息,提高输入参数的质量可以极大地提高海浪高度预测的准确性。以乐亭菩提岛风电场近一年的海上数据为基础,构建了一种基于随机森林(random forest, RF)、鲸鱼优化算法(whale optimization algorithm, WOA)、变分模态分解(variational mode decomposition, VMD)和双向门控循环单元(bidirectional gated recurrent unit, BiGRU)的海浪预测模型。该模型利用随机森林对环境特征等输入变量进行筛选,有效减少数据冗余,然后基于WOA-VMD模型自适应确定最优参数和自适应分解原始序列,提高数据质量并消除数据噪声的干扰。此外,针对海浪预测提出了一种基于注意力机制优化的BiGRU算法,随机森林的注意力机制将为BiGRU的隐藏层状态分配不同的权重,加强关键信息的影响。实验结果表明该模型和其他模型对比,输入质量更高,预测精度更高,拟合程度更准确,对风电场海浪预测有着重大意义。 展开更多
关键词 海浪预测 随机森林 鲸鱼优化算法 变分模态分解 双向门控循环单元 注意力机制
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部