准确的健康状态(state of health,SOH)估算可以确保锂离子电池安全可靠运行,延长其使用寿命。针对当前许多健康特征无法表征电池老化机理,异常工况时无法准确追踪SOH变化趋势的问题,本文提出一种经验模型与数据驱动相结合的SOH估算方法...准确的健康状态(state of health,SOH)估算可以确保锂离子电池安全可靠运行,延长其使用寿命。针对当前许多健康特征无法表征电池老化机理,异常工况时无法准确追踪SOH变化趋势的问题,本文提出一种经验模型与数据驱动相结合的SOH估算方法。将锂离子电池负极固体电解质界面(SEI)膜增厚机理融入Arrhenius定律中构建经验模型,然后采用最小二乘法进行参数辨识,并分别计算每个参数与容量的Spearman相关系数。结果表明,它们与容量衰退都具有强相关性,可以作为估算SOH的健康特征。此外,为了克服双向长短期记忆(bidirectional long and short term memory,BiLSTM)网络参数较多且容易陷入过拟合的问题,本文使用减平均优化(subtraction average based optimizer,SABO)算法对BiLSTM的超参数进行寻优,建立SOH估算模型。最后,采用实验测试数据与美国航空航天局(National Aeronautics and Space Administration,NASA)数据验证了所提方法的适应性,并与长短期记忆(long and short-term memory,LSTM)网络、双向长短期记忆网络以及粒子群优化(particle swarm optimization,PSO)的双向长短期记忆网络3种算法的估算结果进行对比。结果表明,采用SABO-BiLSTM算法估算4节电池SOH的平均绝对百分比误差分别为0.043%、0.053%、0.259%、0.230%,相较于LSTM降低了94.58%、 92.85%、 88.65%、 90.13%,相较于BiLSTM降低了89.11%、91.60%、77.90%、76.41%,相较于PSO-BiLSTM降低了58.65%、58.91%、65.37%、69.29%。展开更多
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin...针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。展开更多
为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM...为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)的组合模型预测瓦斯涌出量。首先,运用主成分分析法(Principal Components Analysis,PCA)处理瓦斯涌出影响因素,降低数据维度,以减少模型计算时的负担;其次,利用GWO优化BiLSTM模型的学习率(best_lr)、隐藏层层数(best_hd)以及正则化系数(best_l2),可有效避免局部最优解问题,并采用决定系数(R-Square,R^(2))、均方根误差(Root Mean Square Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)对所建模型预测的结果进行综合评价分析;最后,将该模型应用于内蒙古自治区某矿回采工作面预测瓦斯涌出量。结果显示:PCA GWO BiLSTM组合模型相比于长短期记忆神经网络(Long Short-Term Memory,LSTM)和双向长短期记忆神经网络对应的单一模型,其MAE分别降低20.81%、30.17%,RMSE分别降低0.063、0.142,R^(2)则分别提高了0.023、0.075,表明该模型在复杂因素条件下具有更高的精准度、泛化性和鲁棒性。展开更多
针对获取碎片化纺纱工艺信息导致的生产效率低下、资源浪费及决策失误等问题,文章提出了一种基于双向长短期记忆网络的纺纱工艺重用知识图谱构建方法。首先,自上而下定义纺纱工艺相关概念、术语和关系,完成对知识图谱模式层的构建;其次...针对获取碎片化纺纱工艺信息导致的生产效率低下、资源浪费及决策失误等问题,文章提出了一种基于双向长短期记忆网络的纺纱工艺重用知识图谱构建方法。首先,自上而下定义纺纱工艺相关概念、术语和关系,完成对知识图谱模式层的构建;其次,根据模式层规则来构建数据层,采用双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)模型捕捉输入序列的上下文信息作为条件随机场(Conditional Random Fields,CRF)的输入,对标签序列进行建模标注以提取关键知识信息,并通过词向量模型(Word2Vec)来计算纺纱相关的文本数据之间的相似度来实现知识融合,从而提升分词准确率;最后通过Neo4j图数据库存储抽取到的纺纱工艺知识,并可视化展示原料、工艺等复杂关系网络,可帮助纺织企业优化生产、提升决策效率。实例分析结果表明,该知识抽取方法具有较高的召回率(88.7%)、准确率(89.9%)和F 1值(89.3%),优于BiLSTM-CRF和LSTM-CRF模型,抽取效果有了显著提升。展开更多
针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各...针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各自优势,提出一种基于KG与Bi-LSTM结合的小麦条锈病预测方法。首先,构建小麦条锈病知识图谱,将与小麦条锈病发生相关的环境信息转换为特征向量;其次,利用特征向量训练Bi-LSTM模型,得到基于Bi-LSTM的小麦条锈病预测模型;最后,利用小麦条锈病数据库数据进行试验。结果表明,KG丰富了进行病害预测所描述的语义信息,提升了Bi-LSTM提取高层病害预测特征的能力,从而提高了病害预测的准确率。在小麦条锈病数据库上的预测准确率达到93.21%,比基于Bi-LSTM的病害预测方法提高了4.5个百分点。该方法能较好预测小麦条锈病,为小麦条锈病的预报预警和综合防治提供科学依据。展开更多
文摘准确的健康状态(state of health,SOH)估算可以确保锂离子电池安全可靠运行,延长其使用寿命。针对当前许多健康特征无法表征电池老化机理,异常工况时无法准确追踪SOH变化趋势的问题,本文提出一种经验模型与数据驱动相结合的SOH估算方法。将锂离子电池负极固体电解质界面(SEI)膜增厚机理融入Arrhenius定律中构建经验模型,然后采用最小二乘法进行参数辨识,并分别计算每个参数与容量的Spearman相关系数。结果表明,它们与容量衰退都具有强相关性,可以作为估算SOH的健康特征。此外,为了克服双向长短期记忆(bidirectional long and short term memory,BiLSTM)网络参数较多且容易陷入过拟合的问题,本文使用减平均优化(subtraction average based optimizer,SABO)算法对BiLSTM的超参数进行寻优,建立SOH估算模型。最后,采用实验测试数据与美国航空航天局(National Aeronautics and Space Administration,NASA)数据验证了所提方法的适应性,并与长短期记忆(long and short-term memory,LSTM)网络、双向长短期记忆网络以及粒子群优化(particle swarm optimization,PSO)的双向长短期记忆网络3种算法的估算结果进行对比。结果表明,采用SABO-BiLSTM算法估算4节电池SOH的平均绝对百分比误差分别为0.043%、0.053%、0.259%、0.230%,相较于LSTM降低了94.58%、 92.85%、 88.65%、 90.13%,相较于BiLSTM降低了89.11%、91.60%、77.90%、76.41%,相较于PSO-BiLSTM降低了58.65%、58.91%、65.37%、69.29%。
文摘针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。
文摘针对获取碎片化纺纱工艺信息导致的生产效率低下、资源浪费及决策失误等问题,文章提出了一种基于双向长短期记忆网络的纺纱工艺重用知识图谱构建方法。首先,自上而下定义纺纱工艺相关概念、术语和关系,完成对知识图谱模式层的构建;其次,根据模式层规则来构建数据层,采用双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)模型捕捉输入序列的上下文信息作为条件随机场(Conditional Random Fields,CRF)的输入,对标签序列进行建模标注以提取关键知识信息,并通过词向量模型(Word2Vec)来计算纺纱相关的文本数据之间的相似度来实现知识融合,从而提升分词准确率;最后通过Neo4j图数据库存储抽取到的纺纱工艺知识,并可视化展示原料、工艺等复杂关系网络,可帮助纺织企业优化生产、提升决策效率。实例分析结果表明,该知识抽取方法具有较高的召回率(88.7%)、准确率(89.9%)和F 1值(89.3%),优于BiLSTM-CRF和LSTM-CRF模型,抽取效果有了显著提升。
文摘针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各自优势,提出一种基于KG与Bi-LSTM结合的小麦条锈病预测方法。首先,构建小麦条锈病知识图谱,将与小麦条锈病发生相关的环境信息转换为特征向量;其次,利用特征向量训练Bi-LSTM模型,得到基于Bi-LSTM的小麦条锈病预测模型;最后,利用小麦条锈病数据库数据进行试验。结果表明,KG丰富了进行病害预测所描述的语义信息,提升了Bi-LSTM提取高层病害预测特征的能力,从而提高了病害预测的准确率。在小麦条锈病数据库上的预测准确率达到93.21%,比基于Bi-LSTM的病害预测方法提高了4.5个百分点。该方法能较好预测小麦条锈病,为小麦条锈病的预报预警和综合防治提供科学依据。