期刊文献+
共找到1,692篇文章
< 1 2 85 >
每页显示 20 50 100
基于时间卷积和长短期记忆网络的短期云资源预测模型 被引量:2
1
作者 陈基漓 李海军 谢晓兰 《科学技术与工程》 北大核心 2025年第7期2856-2864,共9页
随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模... 随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模型和组合模型所存在的预测精度低以及捕获序列特征不充分问题,提出基于时间卷积和长短期记忆网络(temporal convolutional network-long short-term memory, TCN-LSTM)的短期云资源组合预测模型,组合模型中的空洞卷积在不减少特征尺寸的情况下增加感受野获取更长久的时间序列特征,其中残差网络可以跨层传递信息以加快网络的收敛,所获取的时间序列特征可有效提高LSTM的预测精度。利用阿里巴巴公开数据集的进行预测,实验表明所提出的模型与单一的预测模型以及其他组合模型进行对比分析,误差指标-平均绝对误差(mean absolute error, MAE)降低8%~13.7%,均方根误差(root mean squared error, RMSE)降低9.8%~13.1%,证明所提模型的有效性。 展开更多
关键词 容器云 云资源预测 时间卷积网络(TCN) 长短期记忆网络(LSTM)
在线阅读 下载PDF
基于长短期记忆网络模型的联邦学习居民负荷预测 被引量:2
2
作者 朱嵩阳 张歌 +1 位作者 贾愉靖 白晓清 《现代电力》 北大核心 2025年第1期129-136,共8页
居民生活用电量在全社会用电量中占比达到15%以上,且用户数量巨大、分布广。对居民负荷进行准确预测有助于需求侧资源整合,满足需求侧响应的要求。现有居民负荷预测方法多为集中式,在服务器和客户端之间需要进行大量数据交换,导致通信... 居民生活用电量在全社会用电量中占比达到15%以上,且用户数量巨大、分布广。对居民负荷进行准确预测有助于需求侧资源整合,满足需求侧响应的要求。现有居民负荷预测方法多为集中式,在服务器和客户端之间需要进行大量数据交换,导致通信成本增加,并引发信息安全问题。基于联邦学习框架,采用长短期记忆网络对居民负荷预测方法进行研究。利用真实居民负荷数据进行仿真计算分析,结果表明,基于联邦学习的居民负荷预测准确率和计算效率优于集中式。此外,将FedAvg、FedAdagrad、FedYogi三种联邦学习策略进行比较,采用具有自适应优化功能的FedAdagrad联邦学习策略对居民负荷预测的准确率更高,收敛性更强。 展开更多
关键词 居民用户 集中式 联邦学习 负荷预测 长短期记忆网络
在线阅读 下载PDF
基于时间卷积网络和长短期记忆网络的混合模型海面温度预测研究
3
作者 赵煜 王律钧 +1 位作者 姚志刚 陈文凯 《中国海洋大学学报(自然科学版)》 北大核心 2025年第9期147-157,共11页
本研究提出了一种基于时间卷积网络(TCN)和长短期记忆网络(LSTM)的混合模型——TCN-LSTM,以提高海表温度(SST)的预测精度。通过在四个海洋站的敏感性实验,分析了超参数对模型稳定性的影响。通过控制迭代次数、TCN卷积核数量和LSTM神经... 本研究提出了一种基于时间卷积网络(TCN)和长短期记忆网络(LSTM)的混合模型——TCN-LSTM,以提高海表温度(SST)的预测精度。通过在四个海洋站的敏感性实验,分析了超参数对模型稳定性的影响。通过控制迭代次数、TCN卷积核数量和LSTM神经元数量等关键参数,并运用方差分析(ANOVA)方法,本文发现所有p值均大于0.05,这表明不同参数对平均绝对百分比误差(MAPE)的影响不显著,支持了模型的相对稳定性。TCN-LSTM模型结合了TCN在局部特征提取和LSTM在捕获长期依赖关系方面的优势,使其能够有效学习SST数据中的重要特征。在未来7 d的海面温度预测中,TCN-LSTM模型展现出优越的适应性和泛化能力,其相关评价指标表现优异。此外,通过比较不同超参数组合下的预测性能,验证了模型的一致性与可靠性。本研究为SST预测提供了一种新颖的方法论框架,尽管主要集中于单变量时间序列模型,但未来研究将考虑多变量模型和时空特征提取,以进一步提升整体预测精度。 展开更多
关键词 海温预测 深度学习模型 时间卷积网络 长短期记忆网络
在线阅读 下载PDF
基于双向长短期记忆网络的润滑油运动黏度预测
4
作者 孙傲童 彭登明 +3 位作者 王海飞 张兆营 马春 沈义涛 《润滑与密封》 北大核心 2025年第10期158-164,共7页
在复杂的工业环境中,对润滑油黏度进行实时、精准的预测对于保障机械设备安全稳定运行至关重要,但现有预测方法多未能充分挖掘多维传感器数据间复杂的时序依赖与特征关联。为解决润滑油数据相关特征的分析和预测问题,提出一种融合双向... 在复杂的工业环境中,对润滑油黏度进行实时、精准的预测对于保障机械设备安全稳定运行至关重要,但现有预测方法多未能充分挖掘多维传感器数据间复杂的时序依赖与特征关联。为解决润滑油数据相关特征的分析和预测问题,提出一种融合双向长短期记忆网络(Bi-LSTM)与注意力机制的深度学习模型。以某46号汽轮机油的运动黏度、水含量、温度、密度等多维实时监测数据为基础,构建特征处理与时间序列预测两大核心模块。其中,特征处理模块利用自注意力机制捕捉各油品指标间的内在关联,并结合多层感知机(MLP)提取深层非线性特征;时间序列预测模块则通过双路并行的Bi-LSTM结构,分别处理原始数据与深度特征,以捕捉全面的长期依赖关系,再经由注意力机制对不同时间步的贡献进行权重调整,最终实现对未来黏度变化的精确预测。相比标准的Bi-LSTM、LSTM及BP神经网络模型,所提出的模型的均方根误差(RMSE)分别降低了20.5%、29.1%和30.5%,平均绝对误差(MAE)也明显低于其他模型。在模拟传感器故障(特征屏蔽)和数据噪声干扰的鲁棒性测试中,所提出的模型仍能保持较高的预测准确性。 展开更多
关键词 润滑油 运动黏度 长短期记忆网络 自注意力机制 预测
在线阅读 下载PDF
针对非平稳信号和高频噪声的自适应噪声完整集成经验模态分解-双向长短期记忆风功率预测模型
5
作者 万思洋 杨苹 +3 位作者 崔嘉雁 李丰能 隗知初 陈文皓 《电网技术》 北大核心 2025年第3期1176-1184,I0085,共10页
提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高... 提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高风电功率预测的准确性和鲁棒性。当前风电功率预测面临非平稳信号和高频噪声的问题,影响了预测的准确性。针对这一问题,通过CEEMDAN分解,将复杂的非平稳信号分解为多个固有模态函数分量(intrinsic mode function,IMF),在此基础上创新性地通过平均波动幅度(average fluctuation range,AFR)计算IMF的平均波动幅度进行高低频划分,应用经验小波变换(empirical wavelet transform,EWT)对高频分量进行滤波,显著降低信号中的高频噪声,提高数据准确性。随后,分别对高频和低频分量建立Bi-LSTM模型,选取最优参数进行训练和预测,将各分量的预测结果叠加得到最终的风电功率预测值。模型经过不同季节和数据集的验证,展示了其在风电功率预测中的通用性和鲁棒性。研究证明,结合CEEMDAN分解、AFR划分和EWT滤波,通过有效的噪声抑制和数据分解,能够显著提升风电功率预测的准确性和稳定性,弥补了传统方法在处理非平稳信号和高频噪声方面的不足。 展开更多
关键词 风电功率预测 双向长短期记忆神经网络 完全集成经验模态分解 经验小波变换 深度学习
在线阅读 下载PDF
基于改进长短期记忆网络模型的水库库区水温模拟 被引量:1
6
作者 郑铁刚 吴茂喜 +3 位作者 张迪 金瑾 林俊强 孙双科 《农业工程学报》 北大核心 2025年第3期144-153,共10页
水温是影响水库水生态系统的“主因子”,了解库区水温分布及预测未来的水温变化对保护水库生态具有重要的意义。针对水库水温结构复杂、实时预测困难的技术问题,该研究通过在传统的长短期记忆网络模型(long short-term memory,LSTM)中... 水温是影响水库水生态系统的“主因子”,了解库区水温分布及预测未来的水温变化对保护水库生态具有重要的意义。针对水库水温结构复杂、实时预测困难的技术问题,该研究通过在传统的长短期记忆网络模型(long short-term memory,LSTM)中嵌入相关分析模块自动筛选模型的特征输入,并优化输出维度,提出了一种改进的LSTM模型,并在溪洛渡水库工程开展了模型应用研究,结果表明:1)改进LSTM模型的均方根误差最大值为0.63,纳什效率系数最小值为0.96,表明模型整体性能较好,能够精准地捕捉数据中的长期依赖关系;2)基于改进LSTM模型的库区水温分布预测值和环境流体动力学模型(environmental fluid dynamics code,EFDC)模拟值随时间的量值分布及变化规律基本一致,两者的库区表层年际误差值为-1.19~1.04℃,中层年际误差值为-1.06~1.68℃,底层年际误差值为-1.28~1.07℃,年际水温最大相对误差为8.3%;3)相较于EFDC模型多天的模拟时长,改进模型的计算时间缩短至几百秒,计算效率大幅提升,实现了水温分布的快速、实时精准预测。该研究通过改进LSTM模型,实现了深水水库垂向水温的高效预测,研究结果可为分层取水设施的优化调控提供技术支撑。 展开更多
关键词 水温 模拟 改进的长短期网络记忆模型 水温分布 相关性分析 水温预测 人工智能学习
在线阅读 下载PDF
基于ConvLSTM(卷积长短期记忆网络)模型的地铁车站基坑开挖变形预测
7
作者 吴迪 孙建军 卢让贤 《城市轨道交通研究》 北大核心 2025年第11期98-103,共6页
[目的]基坑工程变形预测对于确保施工安全具有重要意义。传统的预测方法在处理基坑变形的复杂时空演化特征方面存在局限性,因此,需要对基坑变形的时空耦合预测方法进行深入分析。[方法]以上海轨道交通21号线龙东大道站基坑工程为案例,... [目的]基坑工程变形预测对于确保施工安全具有重要意义。传统的预测方法在处理基坑变形的复杂时空演化特征方面存在局限性,因此,需要对基坑变形的时空耦合预测方法进行深入分析。[方法]以上海轨道交通21号线龙东大道站基坑工程为案例,提出了一种基于ConvLSTM(卷积长短期记忆网络)模型的基坑变形预测方法。分析了案例车站基坑工程概况,以该基坑C区3个测点为研究对象,阐述了监测数据采集及预处理的方法。构建了基于ConvLSTM的基坑变形预测模型结构图,采用Adam优化器对模型进行了训练。对不同开挖阶段下这3个测点的地下连续墙水平位移实测值与预测值进行了对比,采用均方根误差、平均绝对误差和拟合优度3个指标对预测结果进行了预测精度评价,以验证所提方法的有效性和实用性。[结果及结论]所提方法能同时捕捉基坑变形的空间特征和时间序列特性,预测精度显著优于传统方法,3个测点的均方根误差分别为1.32 mm、1.20 mm和1.26 mm。所建模型对基坑关键变形特征(如最大变形位置、变形拐点)识别准确,能有效支持基坑工程实时监测和预警。 展开更多
关键词 地铁车站 基坑变形预测 卷积长短期记忆网络 深度学习 时空建模
在线阅读 下载PDF
引入精英主义的遗传算法优化长短期记忆网络民航风切变风险预测模型
8
作者 王占海 吴涛 +1 位作者 陈奇 曹大树 《科学技术与工程》 北大核心 2025年第25期10948-10955,共8页
长短期记忆网络(long short-term memory,LSTM)模型在开展民航风切变风险预测应用时,存在性能受超参数配置影响大、调优过程复杂耗时等问题。为提高民航风切变风险预测模型的预测性能,提升其适用性和预测精度,提出一种引入精英主义的遗... 长短期记忆网络(long short-term memory,LSTM)模型在开展民航风切变风险预测应用时,存在性能受超参数配置影响大、调优过程复杂耗时等问题。为提高民航风切变风险预测模型的预测性能,提升其适用性和预测精度,提出一种引入精英主义的遗传算法(elite genetic algorithm,eGA)优化LSTM民航风切变风险预测模型,即eGA-LSTM。首先,利用LSTM的长期记忆能力捕捉风切变的时序特征;其次,通过引入精英主义的遗传算法来优化LSTM模型的超参数,确保优秀特性能够被保留并有效传承,从而避免传统遗传算法在迭代过程中可能出现的优秀个体丢失问题,加速超参数优化流程,提升LSTM泛化能力;再次,统计民航历史风切变不安全事件信息,计算其64个月月风切变风险值,划分训练集和测试集开展模型验证工作,并与单纯的LSTM模型作对比。结果表明,在风切变风险预测中,eGA-LSTM模型均方误差(mean square error,MSE)相较于单纯的LSTM模型降低了15.49%,精度上有显著的提升,模型较好地拟合了月风切变风险的历史序列,在风切变风险预测预警方面展现出更高的准确率和可靠性。 展开更多
关键词 精英主义优化 长短期记忆网络 遗传算法 民航风切变风险 风险预测
在线阅读 下载PDF
长短期记忆网络在隧道火灾实时致灾态势预测中应用研究
9
作者 贾进章 陈佳琦 陈怡诺 《安全与环境学报》 北大核心 2025年第4期1298-1309,共12页
针对隧道火灾过程中高温烟气对人员避灾的威胁,为实现隧道火灾有效控制,及时提供隧道火灾实时救援决策,提出了一种试验测量和人工智能相结合的方法,基于温度传感器和长短期记忆(Long Short-Term Memory,LSTM)网络对烟气温度进行实时预... 针对隧道火灾过程中高温烟气对人员避灾的威胁,为实现隧道火灾有效控制,及时提供隧道火灾实时救援决策,提出了一种试验测量和人工智能相结合的方法,基于温度传感器和长短期记忆(Long Short-Term Memory,LSTM)网络对烟气温度进行实时预测。首先,通过1∶20小面积火灾试验收集不同工况下的温度数据,然后,采用LSTM模型从试验火灾数据库中学习、训练,并进行不同火源类型测试,发现该算法模型可以很好地预测隧道内温度分布。对模型的预测能力进行测试,测试结果表明,预测结果精度高,相对误差在±10%内。与反向传播神经网络(Back Propagation Neural Network,BPNN)模型进行比较,测试误差均值降低3.85百分点,对比效果明显,满足隧道火灾实时态势检测需要,为隧道火灾事故的应急救援建立了较为新颖的智能预测方法。 展开更多
关键词 安全工程 隧道火灾 长短期记忆网络 烟气温度 实时预测
在线阅读 下载PDF
区域化长短期记忆神经网络(LSTM)洪水预报模型研究 被引量:2
10
作者 叶可佳 梁忠民 +4 位作者 陈红雨 钱名开 胡义明 王军 李彬权 《湖泊科学》 北大核心 2025年第2期651-659,共9页
针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一... 针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一数据集,扩大样本数量,为建立乏资料流域洪水预报模型提供了可能。本文选择胶东半岛作为研究区进行应用研究。为验证区域化模型在不同场景中的应用效果,设计了预报流域数据不参与建模,而仅根据区域内其他流域资料建模(区域化模型Ⅰ),以及预报流域的部分数据参与建模(区域化模型Ⅱ)两种情景;此外,选取仅根据预报流域数据训练的单流域模型作为基准模型进行对比分析。结果表明,对本次研究的水文资料短缺流域,两种区域化模型均取得了较好效果,且都优于单流域模型。相较而言,考虑了预报流域数据的区域化模型精度更高,说明在区域化LSTM构建中融入预报流域的数据,可进一步提升区域化模型的精度。研究成果可为乏资料地区的洪水预报提供参考。 展开更多
关键词 长短期记忆神经网络 洪水预报 区域化模型 水文气候相似区 乏资料流域
在线阅读 下载PDF
基于长短期记忆神经网络的多级涡轮过渡态叶尖间隙预测 被引量:2
11
作者 杨超 毛军逵 +3 位作者 杨悦 王飞龙 邵发宁 毕帅 《推进技术》 北大核心 2025年第2期248-257,共10页
为了解决多级涡轮模型在高维度变量的复杂空间耦合效应下向高效、高精度过渡态叶尖间隙预测提出的挑战,本文搭建了基于贝叶斯优化和多任务学习算法的长短期记忆神经网络(BO-MTLLSTM)多级涡轮过渡态叶尖间隙智能预测模型,以实现过渡态叶... 为了解决多级涡轮模型在高维度变量的复杂空间耦合效应下向高效、高精度过渡态叶尖间隙预测提出的挑战,本文搭建了基于贝叶斯优化和多任务学习算法的长短期记忆神经网络(BO-MTLLSTM)多级涡轮过渡态叶尖间隙智能预测模型,以实现过渡态叶尖间隙高效、高精度预测。在BOMTL-LSTM模型中,通过高效的长短期记忆神经网络(Long Short-Term Memory,LSTM)模型对基于有限元分析方法得到的高精度过渡态叶尖间隙时序信息进行学习,并在LSTM模型的基础上,引入多任务学习(Multi-Task Learning,MTL)用于多个叶尖间隙预测任务之间的信息共享,以缓解高维度变量复杂空间耦合作用的影响。同时,结合贝叶斯优化(Bayesian Optimization,BO)对神经网络模型超参数进行全局自动优化,提升预测精度与训练效率。结果表明,相比于传统计算模型,BO-MTL-LSTM模型在同等预测精度下,能够在秒量级时间内完成一个完整发动机历程的多级涡轮过渡态叶尖间隙的预测。此外,相比常规的BO-LSTM模型,BO-MTL-LSTM模型的均方根误差和平均绝对误差分别降低了84.39%和89.21%,模型训练时间缩短了30%,该模型可以实现多级叶尖间隙的高效、精准预测。 展开更多
关键词 多级涡轮 叶尖间隙预测 多任务学习 长短期记忆神经网络 贝叶斯优化
在线阅读 下载PDF
基于树状结构Parzen估计器优化长短期记忆神经网络的燃煤机组NO_(x)生成浓度预测 被引量:1
12
作者 陈东升 梁中荣 +3 位作者 郑国 何荣强 屈可扬 甘云华 《中国电机工程学报》 北大核心 2025年第7期2710-2718,I0022,共10页
建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升N... 建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升NO_(x)预测模型精度与泛化性。该文提出一种基于树状结构Parzen估计器优化长短期记忆(tree-structure parzen estimator optimized long short-term memory neural network,TPE-LSTM)神经网络的NO_(x)生成浓度预测模型。基于某330 MW燃煤机组的历史运行数据,获取NO_(x)生成相关变量参数,将模型结构参数与NO_(x)相关变量参数的时间序列窗口长度以及主成分数量相互耦合,组成一类新的超参数;通过优化改进后的超参数取值,构建基于长短期记忆(long short-term memory,LSTM)神经网络的NO_(x)生成浓度预测模型;将所提出的超参数优化后的NO_(x)预测模型与基于未优化的LSTM模型、采用粒子群优化的LSTM(particle swarm optimization optimized LSTM,PSO-LSTM)模型对比,预测结果表明,TPE-LSTM预测模型具有较好的模型精度与泛化能力。 展开更多
关键词 燃煤锅炉 NO_(x)生成浓度预测 树状结构Parzen估计器 超参数优化 长短期记忆神经网络
在线阅读 下载PDF
采用堆叠长短期记忆神经网络的水质连续预测方法 被引量:1
13
作者 张建奇 冯乐源 +1 位作者 李东鹤 杨清宇 《西安交通大学学报》 北大核心 2025年第6期93-102,共10页
针对水环境监测中的水质参数异常、预测精度低等问题,提出了一种基于堆叠长短期记忆神经网络(SLSTM)的水质参数预测模型,以解决时序数据不完整带来的挑战。首先,分析了缺失或异常的水质数据时序特征,并基于堆叠长短期记忆网络设计了水... 针对水环境监测中的水质参数异常、预测精度低等问题,提出了一种基于堆叠长短期记忆神经网络(SLSTM)的水质参数预测模型,以解决时序数据不完整带来的挑战。首先,分析了缺失或异常的水质数据时序特征,并基于堆叠长短期记忆网络设计了水质预测的深度神经网络模型;其次,采用逐点预测和多步预测方法对所提模型进行对比实验验证;最后,为了量化模型的预测性能,引入平均绝对百分比误差(MAPE)和均方根误差(RMSE)两类指标,评估SLSTM模型相对于支持向量回归(SVR)和自回归综合移动平均(ARIMA)模型的优越性。实验结果表明,在短期(24h)和长期(48h)水质余氯预测中,SLSTM的预测精度显著高于其他两类模型:在多步预测中,SLSTM的MAPE至少比SVR降低了9.15%;逐点预测中,SLSTM的RMSE至少比SVR降低了31.25%。此外,相较于ARIMA模型,SLSTM能够更有效地捕捉水质数据的非线性变化趋势,提升预测稳定性。研究不仅验证了SLSTM在水质参数预测中的有效性,还为水环境监测领域提供了新的视角和工具。 展开更多
关键词 余氯预测 水质参数预测 数据时序 长短期记忆神经网络
在线阅读 下载PDF
混合变分模态长短期记忆网络水库表面位移形变预测
14
作者 孙喜文 贺小星 +3 位作者 鲁铁定 王海城 张云涛 陈红康 《国防科技大学学报》 北大核心 2025年第3期151-161,共11页
为提高水库位移形变预测精度,通过改变变分模态分解(variational mode decomposition,VMD)的分解方式,融合VMD与长短期记忆网络对非线性非平稳的水库位移形变进行预测,提出了一种混合变分模态长短期记忆网络(mix variational mode decom... 为提高水库位移形变预测精度,通过改变变分模态分解(variational mode decomposition,VMD)的分解方式,融合VMD与长短期记忆网络对非线性非平稳的水库位移形变进行预测,提出了一种混合变分模态长短期记忆网络(mix variational mode decomposition long short-term memory,MVMDLSTM)模型预测方法;对不同单一预测模型与组合模型采用多源数据集验证新方法的可靠性。实验结果表明:MVMDLSTM模型能有效减弱单一预测模型与经验模态分解组合模型估计的偏差,MVMDLSTM模型预测精度更优,为稳定监测水库慢滑移和蠕动等微小变形预测预警提供有效的数据决策。 展开更多
关键词 变分模态分解 人工神经网络 长短期记忆网络 形变预测
在线阅读 下载PDF
基于长短期记忆网络与贝叶斯优化的页岩气井产量动态预测方法
15
作者 张子彤 师晨一 +1 位作者 付应坤 王丹群 《科学技术与工程》 北大核心 2025年第27期11569-11580,共12页
生产动态预测对于页岩气资源开发制定有效的气井管理策略、优化生产以及最大化经济回报具有重要作用,传统的递减分析及产能模型在页岩气产能预测方面具有一定局限性,以8口北美页岩气水平井为研究对象,将页岩气井的生产数据处理成时间序... 生产动态预测对于页岩气资源开发制定有效的气井管理策略、优化生产以及最大化经济回报具有重要作用,传统的递减分析及产能模型在页岩气产能预测方面具有一定局限性,以8口北美页岩气水平井为研究对象,将页岩气井的生产数据处理成时间序列,采用长短期记忆网络(long short-term memory,LSTM)的机器学习和贝叶斯优化方法,较为准确地实现了页岩气井返排动态预测,并筛选出了产量预测的关键参数。研究结果表明:井底流压和日产水量是LSTM模型预测页岩气产量的关键输入参数;随着预测天数的增加,LSTM模型的准确性有所下降;研究结果可为时间序列分析方法在页岩气井动态预测方面的应用提供重要参考。 展开更多
关键词 长短期记忆网络 机器学习 生产动态预测 时间序列
在线阅读 下载PDF
基于卷积双向长短期记忆网络的微网继电保护故障诊断技术 被引量:1
16
作者 杨志淳 闵怀东 +3 位作者 杨帆 雷杨 胡伟 陈鹤冲 《太阳能学报》 北大核心 2025年第1期420-428,共9页
分布式电源种类和容量不断提升的微网运行方式复杂、故障特征微弱,现有的继电保护装置故障诊断方法无法满足保护需求。提出一种基于卷积双向长短期记忆网络的微网继电保护故障诊断技术。首先,分析多能源互补微网系统架构,对采集的三相... 分布式电源种类和容量不断提升的微网运行方式复杂、故障特征微弱,现有的继电保护装置故障诊断方法无法满足保护需求。提出一种基于卷积双向长短期记忆网络的微网继电保护故障诊断技术。首先,分析多能源互补微网系统架构,对采集的三相电流数据进行预处理,提高后续模型对数据的学习效率;然后,融合卷积神经网络和双向长短期记忆网络提出卷积双向长短期记忆网络的微网继电保护故障诊断方法,提取三相电流数据长序列和局部序列特征实现故障分类、故障定位,融合注意力机制,重点关注对故障诊断有影响的特征,提高故障诊断准确率;最后经过RTDS实时仿真系统进行验证,实验结果表明,所提方法故障诊断精度高、计算时间短,同卷积神经网络、长短期记忆网络、人工神经网络相比,故障分类准确率分别提升8.53%、9.62%、11.45%,故障定位准确率分别提升7.47%、10.61%、10.85%,验证所提方法的有效性与先进性。 展开更多
关键词 微网 继电保护 故障诊断 卷积双向长短期记忆网络 三相电流 注意力机制
在线阅读 下载PDF
用户响应机制下基于长短期记忆网络的负荷聚合商用电模型
17
作者 朱虹 孟祥娟 +4 位作者 孙健 傅鹏 吴寅涛 唐昊 方道宏 《现代电力》 北大核心 2025年第3期550-561,共12页
负荷聚合商(load aggregator,LA)建立自身用电模型,能有效掌握自身响应电网的能力。鉴于LA内部用户众多,且用户响应具有随机性,难以建立整体的用电模型。因此,针对包含多类用户的LA,该文提出一种基于长短期记忆网络(long short-term mem... 负荷聚合商(load aggregator,LA)建立自身用电模型,能有效掌握自身响应电网的能力。鉴于LA内部用户众多,且用户响应具有随机性,难以建立整体的用电模型。因此,针对包含多类用户的LA,该文提出一种基于长短期记忆网络(long short-term memory,LSTM)的LA用电模型搭建方法。首先,根据LA内部用户的响应特性,将用户按其激励方式分类,并将日前温度、光照强度、各用户的激励价格和用户的负荷基线等用户特征数据进行聚合,生成训练样本。然后,根据聚合后的训练样本对LSTM进行训练,建立LA特征数据与其用电曲线的映射关系。最后,以包含居民、商业楼宇、充电站、医院四类用户的LA为算例进行验证。结果表明,模型能有效表征LA实施用户需求响应(user demand response,UDR)后的用电行为。 展开更多
关键词 负荷聚合商 用户需求响应 长短期记忆网络 用电模型
在线阅读 下载PDF
基于长短期记忆网络的半参数SEIR模型
18
作者 张静 金彤 《东北师大学报(自然科学版)》 北大核心 2025年第1期46-52,共7页
提出了带有非线性传播函数的半参数SEIR模型以捕获疾病的传播,从理论上分析了模型的基本性质及基本再生数.以新冠感染为例,比较了各国疫情初期的传播函数,得出不同地区人口、防疫措施等因素对疫情传播的影响不同.以印度为例,利用长短期... 提出了带有非线性传播函数的半参数SEIR模型以捕获疾病的传播,从理论上分析了模型的基本性质及基本再生数.以新冠感染为例,比较了各国疫情初期的传播函数,得出不同地区人口、防疫措施等因素对疫情传播的影响不同.以印度为例,利用长短期记忆(LSTM)神经网络对传播函数的离散值进行了拟合,代回半参数SEIR模型后预测出感染人数,所得结果与经典SEIR模型比较,平均绝对百分比误差降低71.73%.因此,半参数SEIR模型对疫情的理论估计更符合实际情况. 展开更多
关键词 SEIR模型 传播函数 半参数 长短期记忆神经网络 新冠感染
在线阅读 下载PDF
基于双向长短期记忆神经网络的三维地应力场模拟
19
作者 姚昌宇 唐潮 +4 位作者 李晓明 周文 朱新春 邓乃尔 Umair Yousaf 《成都理工大学学报(自然科学版)》 北大核心 2025年第5期986-1004,共19页
准确预测地应力场对于设计水力压裂作业至关重要,因为它直接影响裂缝扩展和总体产能效率。传统的协克里金建模方法在捕捉多种岩石力学参数与地震属性之间复杂的非线性关系时常存在不足,尤其当这些参数受到沉积环境或岩性差异的影响时,... 准确预测地应力场对于设计水力压裂作业至关重要,因为它直接影响裂缝扩展和总体产能效率。传统的协克里金建模方法在捕捉多种岩石力学参数与地震属性之间复杂的非线性关系时常存在不足,尤其当这些参数受到沉积环境或岩性差异的影响时,预测精度会降低。为了解决这些问题,本研究提出了一种基于双向长短期记忆(Bi-LSTM)神经网络的三维地应力场预测新方法。该方法通过构建三维岩石力学约束模型,并将其与有限元方法结合进行地应力场预测。对测井数据、岩石力学参数和地震属性进行预处理,并训练Bi-LSTM模型,以更好地捕捉这些参数之间的复杂空间相关性。由Bi-LSTM模型生成的三维约束体作为协克里金方法.中的次级变量,构建综合岩石力学模型,然后在有限元框架下进行三维地应力场模拟。结果显示,与传统循环神经网络方法相比,该方法在预测精度和可靠性方面有显著提高,平均绝对误差减少超过80%,拟合精度提高了7%以上。最大水平应力、最小水平应力和应力方向的平均预测误差分别为2.29%,2.19%和7.97%。结果表明,本研究所提出的方法不仅提高了地应力场预测的准确性,还为机器学习方法在地应力场模拟中的应用提供了新的参考,有望更有效地推动水力压裂设计的发展。 展开更多
关键词 现今地应力场模拟 测井解释 双向长短期记忆神经网络 协克里金方法 机器学习
在线阅读 下载PDF
双向长短期记忆网络的时间序列预测方法 被引量:8
20
作者 管业鹏 苏光耀 盛怡 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期103-112,共10页
时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时... 时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时序数据预测的应用需求。针对上述问题,提出了一种基于时间注意力机制双向长短期记忆网络的时间序列预测方法。笔者提出的网络模型采用改进的正向和反向传播机制提取时序信息并通过自适应权重分配策略推理未来的时序信息。具体来说,设计了一个改进的双向长短期记忆网络,通过结合双向长短期记忆和长短期记忆网络提取深度时间序列特征,挖掘上下文的时序依赖关系。在此基础上,融合所提出的时间注意力机制,实现对深度时间序列特征进行自适应加权,提升深度时序特征的显著性表达能力。通过与同类代表性方法在多个不同类别数据集上的客观定量对比,实验结果表明,该方法能够在多种类别的复杂时间序列数据上更优的预测性能。 展开更多
关键词 时间序列 双向长短期记忆网络 长短期记忆网络 注意力机制 深度学习
在线阅读 下载PDF
上一页 1 2 85 下一页 到第
使用帮助 返回顶部