期刊文献+
共找到238篇文章
< 1 2 12 >
每页显示 20 50 100
基于卷积神经网络和双向长短期记忆网络的微地震记录去噪方法
1
作者 王泰然 鲍逸非 《北京大学学报(自然科学版)》 北大核心 2025年第3期487-500,共14页
提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模... 提出一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的深度学习模型,用于时间域波形去噪.选取四川省自贡和内江地区的微震观测数据,基于该地区的构造模型和震源机制进行数值模拟,生成无噪声数据集,并叠加观测微震噪声,构建模拟含噪声数据集.通过深度学习网络的训练,获得性能稳定且泛化能力强的去噪模型,该模型在验证集上也表现优异.与传统去噪方法相比,所提方法的去噪效果显著提升,能够更好地保留信号的细节特征和频谱特征.将该模型应用于自贡和内江地区的实际微震观测数据,结果表明能有效地去除实测数据中的噪声. 展开更多
关键词 微小地震 噪声去除 卷积神经网络(CNN) 双向长短期记忆网络(bilstm) 深度学习
在线阅读 下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:3
2
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
在线阅读 下载PDF
改进双向长短期记忆神经网络的瓦斯涌出量预测 被引量:3
3
作者 祁云 白晨浩 +3 位作者 代连朋 汪伟 薛凯隆 崔欣超 《安全与环境学报》 CAS CSCD 北大核心 2024年第12期4630-4637,共8页
为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM... 为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)的组合模型预测瓦斯涌出量。首先,运用主成分分析法(Principal Components Analysis,PCA)处理瓦斯涌出影响因素,降低数据维度,以减少模型计算时的负担;其次,利用GWO优化BiLSTM模型的学习率(best_lr)、隐藏层层数(best_hd)以及正则化系数(best_l2),可有效避免局部最优解问题,并采用决定系数(R-Square,R^(2))、均方根误差(Root Mean Square Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)对所建模型预测的结果进行综合评价分析;最后,将该模型应用于内蒙古自治区某矿回采工作面预测瓦斯涌出量。结果显示:PCA GWO BiLSTM组合模型相比于长短期记忆神经网络(Long Short-Term Memory,LSTM)和双向长短期记忆神经网络对应的单一模型,其MAE分别降低20.81%、30.17%,RMSE分别降低0.063、0.142,R^(2)则分别提高了0.023、0.075,表明该模型在复杂因素条件下具有更高的精准度、泛化性和鲁棒性。 展开更多
关键词 安全工程 瓦斯涌出 灰狼优化算法 双向长短期记忆神经网络 主成分分析法
在线阅读 下载PDF
基于双向长短期记忆神经网络的老挝语分词方法 被引量:17
4
作者 何力 周兰江 +1 位作者 周枫 郭剑毅 《计算机工程与科学》 CSCD 北大核心 2019年第7期1312-1317,共6页
作为语言最小独立运行且有意义的单位,将连续型的老挝语划分成词是非常有必要的。提出一种基于双向长短期记忆BLSTM神经网络模型的老挝语分词方法,使用包含913 487个词的人工分词语料来训练模型,将老挝语分词任务转化为基于音节的序列... 作为语言最小独立运行且有意义的单位,将连续型的老挝语划分成词是非常有必要的。提出一种基于双向长短期记忆BLSTM神经网络模型的老挝语分词方法,使用包含913 487个词的人工分词语料来训练模型,将老挝语分词任务转化为基于音节的序列标注任务,即将老挝语音节标注为词首(B)、词中(M)、词尾(E)和单独成词(S)4个标签。首先将老挝语句子划分成音节并训练成向量,然后把这些向量作为BLSTM神经网络模型的输入来预估该音节所属标签,再使用序列推断算法确定其标签,最后使用人工标注的分词语料进行实验。实验表明,基于双向长短期记忆神经网络的老挝语分词方法在准确率上达到了87.48%,效果明显好于以往的分词方法。 展开更多
关键词 神经网络 音节 双向长短期记忆 老挝语分词
在线阅读 下载PDF
针对非平稳信号和高频噪声的自适应噪声完整集成经验模态分解-双向长短期记忆风功率预测模型
5
作者 万思洋 杨苹 +3 位作者 崔嘉雁 李丰能 隗知初 陈文皓 《电网技术》 北大核心 2025年第3期1176-1184,I0085,共10页
提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高... 提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高风电功率预测的准确性和鲁棒性。当前风电功率预测面临非平稳信号和高频噪声的问题,影响了预测的准确性。针对这一问题,通过CEEMDAN分解,将复杂的非平稳信号分解为多个固有模态函数分量(intrinsic mode function,IMF),在此基础上创新性地通过平均波动幅度(average fluctuation range,AFR)计算IMF的平均波动幅度进行高低频划分,应用经验小波变换(empirical wavelet transform,EWT)对高频分量进行滤波,显著降低信号中的高频噪声,提高数据准确性。随后,分别对高频和低频分量建立Bi-LSTM模型,选取最优参数进行训练和预测,将各分量的预测结果叠加得到最终的风电功率预测值。模型经过不同季节和数据集的验证,展示了其在风电功率预测中的通用性和鲁棒性。研究证明,结合CEEMDAN分解、AFR划分和EWT滤波,通过有效的噪声抑制和数据分解,能够显著提升风电功率预测的准确性和稳定性,弥补了传统方法在处理非平稳信号和高频噪声方面的不足。 展开更多
关键词 风电功率预测 双向长短期记忆神经网络 完全集成经验模态分解 经验小波变换 深度学习
在线阅读 下载PDF
基于Softmax函数增强卷积神经网络—双向长短期记忆网络框架的交通拥堵预测算法 被引量:20
6
作者 陈悦 杨柳 +3 位作者 李帅 刘恒 唐优华 郑佳雯 《科学技术与工程》 北大核心 2022年第29期12917-12926,共10页
对交通状态进行预测,需要准确识别和判断交通状态。基于道路自身的自由流速度,将具有不同速度等级的街道统一以旅行时间指数(travel time index, TTI)作为拥堵评价,相较于以车辆速度为基准的传统预测方法更能表现出道路的拥堵状态。提... 对交通状态进行预测,需要准确识别和判断交通状态。基于道路自身的自由流速度,将具有不同速度等级的街道统一以旅行时间指数(travel time index, TTI)作为拥堵评价,相较于以车辆速度为基准的传统预测方法更能表现出道路的拥堵状态。提出了一种改进的深度学习预测模型(CS-BiLSTM),该模型基于卷积神经网络(convolutional neural networks, CNN)和双向长短期记忆(bidirectional long short-term memory, BiLSTM),并结合Softmax函数增强CNN提取出的交通空间特征信息。最后以成都市出租车的全球定位系统(global positioning system, GPS)数据进行验证。结果表明,所提出的CS-BiLSTM模型具有更高的准确性,其性能相比CNN-BiLSTM网络预测框架提升了13%。 展开更多
关键词 交通拥堵预测 旅行时间指数(TTI) 卷积神经网络(CNN) Softmax函数 双向长短期记忆(bilstm)
在线阅读 下载PDF
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:30
7
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于改进一维卷积和双向长短期记忆神经网络的故障诊断方法 被引量:14
8
作者 董永峰 孙跃华 +2 位作者 高立超 韩鹏 季海鹏 《计算机应用》 CSCD 北大核心 2022年第4期1207-1215,共9页
针对工业领域中故障诊断数据存在时序性和夹杂强噪声的特点导致的收敛速度慢以及诊断精度低的问题,提出了一种基于改进一维卷积和双向长短期记忆(1DCNN-BiLSTM)神经网络融合的故障诊断方法。该方法包括故障振动信号的预处理、特征的自... 针对工业领域中故障诊断数据存在时序性和夹杂强噪声的特点导致的收敛速度慢以及诊断精度低的问题,提出了一种基于改进一维卷积和双向长短期记忆(1DCNN-BiLSTM)神经网络融合的故障诊断方法。该方法包括故障振动信号的预处理、特征的自动提取以及振动信号的分类。首先,采用自适应白噪声的完整经验模态分解(CEEMDAN)技术对原始振动信号进行预处理;其次,构建1DCNN-BiLSTM双通道模型,将处理后信号输入双向长短期记忆(BiLSTM)神经网络模型和一维卷积神经网络(1DCNN)模型两个通道,从而对信号的时序相关性特征、局部空间的非相关性特征和弱周期性规律进行充分提取;然后,针对信号夹杂强噪声的问题,对压缩与激励网络(SENet)模块进行改进并将其作用于两个不同的通道;最后,输入全连接层将双通道提取的特征进行融合并借助Softmax分类器实现对设备故障的精确识别。使用凯斯西储大学轴承数据集进行实验,结果表明改进后的SENet模块同时作用于1DCNN通道和stacked BiLSTM通道,1DCNN-BiLSTM双通道模型在保证快速收敛的情况下有最高诊断精度96.87%,优于传统单通道模型,有效提高了机械设备故障诊断效率。 展开更多
关键词 注意力机制 一维卷积神经网络 双向长短期记忆神经网络 双通道 故障诊断
在线阅读 下载PDF
基于双向长短期记忆神经网络的岩相预测方法 被引量:9
9
作者 熊玄辰 曹俊兴 +2 位作者 周鹏 许汉卿 程明 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期226-234,共9页
介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测。通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度... 介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测。通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度和伽马拟声波阻抗作为输入,以岩相作为标签,通过Bi-LSTM模型训练建立输入数据与岩相的非线性映射关系。将该方法应用于四川某浅层河道砂体勘探区岩相预测,结果表明,基于Bi-LSTM构建的岩相预测方法优于普通循环神经网络和普通LSTM,能够快速确定地下岩相,有效指示河道。基于Bi-LSTM的岩相预测方法能有效提取输入数据与岩相信息的非线性映射关系,对少井地区的岩相预测工作有较高的实用价值。 展开更多
关键词 深度学习 循环神经网络 双向长短期记忆神经网络 岩相预测
在线阅读 下载PDF
基于时空注意力机制的双向长短期记忆神经网络的股指预测研究 被引量:3
10
作者 杨蓦 王静 《运筹与管理》 CSSCI CSCD 北大核心 2023年第8期174-180,共7页
股票市场是一个高噪音的混沌系统,其外部属性之间的相关性问题以及在长期预测时外部影响对股价波动的加剧,导致对股票市场进行准确预测是一项富有挑战性的工作。为解决上述问题,本文利用基于注意力机制的双向长短期记忆神经网络(BiLSTM... 股票市场是一个高噪音的混沌系统,其外部属性之间的相关性问题以及在长期预测时外部影响对股价波动的加剧,导致对股票市场进行准确预测是一项富有挑战性的工作。为解决上述问题,本文利用基于注意力机制的双向长短期记忆神经网络(BiLSTM)对香港地区恒生指数收盘价进行有效性的实证检验。其中,空间注意力机制用于捕捉输入指标之间的相关性并为其赋予区别权重,时间注意力机制用于描述数据的时间相关性以解决长期预测中的时间依赖问题并为时间步赋予区别权重,BiLSTM神经网络用于拟合数据并构建预测模型。本文还比较了四种基于注意力机制的神经网络方法和六种基线方法,实验结果表明,与当下流行的股票指数预测方法相比,基于双维度注意力机制的BiLSTM可以在短、中、长期预测中均实现更准确的股票指数收盘价预测。 展开更多
关键词 注意力机制 双向长短期记忆神经网络 股票指数预测 长期预测 时空关系
在线阅读 下载PDF
基于双向长短期记忆神经网络的配网电压异常数据检测 被引量:26
11
作者 况华 何鑫 +2 位作者 何觅 覃日升 姜訸 《科学技术与工程》 北大核心 2021年第24期10291-10297,共7页
受自然环境、计量仪器等影响,量测数据会出现异常,导致调度人员错误决策,威胁电力系统安全稳定运行。为保障电力系统安全稳定运行,提出了一种基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络的配网电压无监... 受自然环境、计量仪器等影响,量测数据会出现异常,导致调度人员错误决策,威胁电力系统安全稳定运行。为保障电力系统安全稳定运行,提出了一种基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络的配网电压无监督异常数据检测方法。利用Bi-LSTM神经网络处理时序数据的双向特性,建立时序预测模型,通过对比预测值和实际值的误差检测异常数据。最后,基于某实际配网电压数据进行仿真验证,仿真结果表明:所提方法在准确率、F1分数等指标方面均优于决策树、K近邻、支持向量机、长短期记忆(long short-term memory,LSTM)神经网络。 展开更多
关键词 异常数据检测 配网电压 双向长短期记忆(Bi-LSTM)神经网络 时序
在线阅读 下载PDF
基于卷积神经网络-双向长短期记忆网络的人体活动识别方法 被引量:12
12
作者 孙彦玺 陈继斌 武东辉 《科学技术与工程》 北大核心 2022年第4期1517-1525,共9页
针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,... 针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期记忆网络的深度学习模型(convolutional neural network-bidirectional long short term memory network,CNN-BiLSTM)进行人体活动识别(human activity recognition,HAR)。首先对人体活动数据进行样本分割,然后采用卷积神经网络(convolutional neural networks,CNN)自动提取人体活动数据的特征,再通过双向长短时记忆网络(bi-directional long-short term memory,BiLSTM)学习人体活动数据特征在时间序列上前后两个方向的相关性,最后利用softmax分类器实现对人体活动分类。DaLiAc公开数据集上的仿真实验结果表明:基于CNN-BiLSTM网络的人体活动识别方法对13种人体活动的识别准确率达到了97.7%,与仅具备时间特征学习的LSTM网络和BiLSTM网络相比,具有更好的识别分类效果。 展开更多
关键词 人体活动识别(HAR) 卷积神经网络(CNN) 双向长短记忆网络(bilstm) 深度学习 可穿戴传感器
在线阅读 下载PDF
基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测 被引量:20
13
作者 刘杰 从兰美 +3 位作者 夏远洋 潘广源 赵汉超 韩子月 《电力系统保护与控制》 EI CSCD 北大核心 2024年第8期123-133,共11页
新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改... 新能源在现代电力系统中占比不断提高,其负荷不规律性、波动性远大于传统电力系统,这就导致负荷预测精度不高。针对这个问题,提出了蜣螂优化(dung beetle optimizer,DBO)算法优化变分模态分解(variational mode decomposition,VMD)与改进鲸鱼优化算法优化双向长短期记忆(improved whale optimization algorithm-bidirectional long short-term memory,IWOA-BILSTM)神经网络相结合的短期负荷预测模型。首先利用DBO优化VMD,分解时间序列数据,并根据最小包络熵对各种特征数据进行分类,增强了分解效果。通过对原始数据进行有效分解,降低了数据的波动性。然后使用非线性收敛因子、自适应权重策略与随机差分法变异策略增强鲸鱼优化算法的局部及全局搜索能力得到改进鲸鱼优化算法(improved whale optimization algorithm,IWOA),并用于优化双向长短期记忆(bidirectional long short-term memory,BILSTM)神经网络,增加了模型预测的精确度。最后将所提方法应用于某地真实的负荷数据,得到最终相对均方根误差、平均绝对误差和平均绝对百分比误差分别为0.0084、48.09、0.66%,证明了提出的模型对于短期负荷预测的有效性。 展开更多
关键词 蜣螂优化算法 VMD 改进鲸鱼算法 短期电力负荷预测 双向长短期记忆神经网络 组合算法
在线阅读 下载PDF
基于卷积双向长短期神经网络的调制方式识别 被引量:8
14
作者 谭继远 张立民 钟兆根 《火力与指挥控制》 CSCD 北大核心 2020年第6期129-134,共6页
针对现有卷积神经网络方法下调制识别时间较长、网络较复杂等问题,将卷积神经网络(Convolutional Neural Networks,CNN)与双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)相结合,提出一种基于CNN-BiLSTM的调制... 针对现有卷积神经网络方法下调制识别时间较长、网络较复杂等问题,将卷积神经网络(Convolutional Neural Networks,CNN)与双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)相结合,提出一种基于CNN-BiLSTM的调制方式识别方法。利用CNN卷积运算提取信号的空间特征,利用BiLSTM提取到信号的时序相关性,利用softmax层输出识别概率,达到多调制识别的目的。实验结果表明,在没有信道和噪声等先验信息的条件下,该方法的识别性能得到了进一步提升,能有效识别16QAM、64QAM等11种调制类别,且该方法的复杂度较低,大大节省了训练识别时间,具有较好的工程应用价值。 展开更多
关键词 调制识别 卷积神经网络 双向长短期记忆神经网络 深度学习
在线阅读 下载PDF
一种采用记忆神经网络和曲线形状修正的负荷预测方法 被引量:5
15
作者 张家安 李凤贤 +1 位作者 王铁成 郝妍 《电力工程技术》 北大核心 2024年第1期117-126,共10页
针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输... 针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。 展开更多
关键词 短期负荷预测 Attention机制 双向长短记忆(bilstm)神经网络 负荷峰值 负荷标幺曲线 曲线形状修正
在线阅读 下载PDF
基于观测数据潜在特征与双向长短期记忆网络的车辆轨迹预测 被引量:5
16
作者 郭应时 张瑞宾 +2 位作者 陈元华 李天明 蒋春燕 《汽车技术》 CSCD 北大核心 2022年第3期21-27,共7页
针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状... 针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法。首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状态观测数据的潜在特征,然后将以序列方式构造的具有时空关系的特征向量作为BiLSTM网络的输入数据,最后利用车辆运行数据对所构建的1DCNN-BiLSTM模型进行训练,形成期望的输入输出映射关系,从而预测车辆的行驶轨迹。试验结果表明,1DCNN-BiLSTM相比传统方法能更加准确有效地处理序列数据,对车辆运行轨迹预测的效果也具有较高的鲁棒性。 展开更多
关键词 观测数据 卷积神经网络 双向长短期记忆 时空关系 轨迹预测
在线阅读 下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究 被引量:2
17
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(bilstm)网络 多头自注意力 多核最大均值差异
在线阅读 下载PDF
采用小波变换和双向长短期记忆网络的脑电睡眠分期模型 被引量:9
18
作者 王天宇 陈晗 +1 位作者 王刚 吴宁 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第9期104-111,共8页
针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作... 针对睡眠生理信号采集难度大、睡眠分期精度低的问题,提出一种采用小波变换和双向长短期记忆网络的脑电睡眠分期模型。首先使用连续小波变换提取睡眠脑电的时频图;然后使用卷积神经网络从脑电信号的时频图中提取睡眠相关的脑电特征,作为单个睡眠片段的分期依据,再使用双向长短期记忆网络进一步提取睡眠片段之间的状态转换规则;最后利用深度学习方法建立特征、规则与睡眠阶段的映射,使用数据扩充和两步训练法训练模型,削弱数据不均衡的影响,完成连续片段的睡眠分期。采用SHHS公开数据库的5793名被试者的睡眠脑电数据对该模型进行验证,实验结果表明,睡眠分期准确率达到85.82%,整体F1达到78.39,Kappa系数达到0.799,和现有方法相比性能明显提升。 展开更多
关键词 睡眠分期 脑电信号 连续小波变换 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法 被引量:43
19
作者 龚飘怡 罗云峰 +1 位作者 方哲梅 窦帆 《计算机应用》 CSCD 北大核心 2021年第S01期81-86,共6页
短期电力负荷预测是电力系统中的重要问题之一,准确的预测结果可以提高电力市场的灵活性和资源利用效率,对电力系统高效运行具有重要意义。为了提高预测精度,针对电网负荷数据的时序性特征,提出一种基于Attention-BiLSTM-LSTM神经网络... 短期电力负荷预测是电力系统中的重要问题之一,准确的预测结果可以提高电力市场的灵活性和资源利用效率,对电力系统高效运行具有重要意义。为了提高预测精度,针对电网负荷数据的时序性特征,提出一种基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法。该方法首先针对电力负荷的影响因素(温度、节假日等)提取特征,并使用双向长短期记忆(BiLSTM)神经网络层进行双向时序的特征学习;将双向时序特征作为长短期记忆(LSTM)神经网络层的输入,用LSTM神经网络建模学习时序数据的内部变化规律;使用attention机制计算LSTM隐层状态的不同权重,以对隐层状态进行选择性地关注;结合注意力权重和LSTM神经网络进行负荷预测,最后使用全连接层输出负荷预测结果。使用EUNIT电力负荷数据集进行实验,采用提前单点预测模式,该方法的平均绝对百分比误差(MAPE)达到1.66%,均方根误差(RMSE)达到814.85。通过与单LSTM网络、基于attention机制的LSTM网络(Attention-LSTM)、前馈神经网络(FFNN)、卷积神经网络联合长短期记忆神经网络(CNN-LSTM)等4种典型的负荷预测模型结果对比,验证了Attention-BiLSTM-LSTM神经网络方法更加准确有效。 展开更多
关键词 短期负荷预测 长短期记忆神经网络 注意力机制 循环神经网络 双向长短期记忆神经网络
在线阅读 下载PDF
基于卷积双向长短期记忆网络与混沌理论的滚动轴承故障诊断 被引量:7
20
作者 金江涛 许子非 +3 位作者 李春 缪维跑 孙康 肖俊青 《振动与冲击》 EI CSCD 北大核心 2022年第17期160-169,共10页
针对传统滚动轴承故障诊断方法在大噪声与变载荷环境下诊断困难的问题。基于混沌理论,通过卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)提出CCNN(Chaotic CNN)-BiLSTM智能故障诊断方法。采用相空间重构法将一维时间序列转化为二维混... 针对传统滚动轴承故障诊断方法在大噪声与变载荷环境下诊断困难的问题。基于混沌理论,通过卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)提出CCNN(Chaotic CNN)-BiLSTM智能故障诊断方法。采用相空间重构法将一维时间序列转化为二维混沌序列,学习并提取混沌序列中有效非线性信息,并输入Softmax层中完成分类。结果表明,较之现有方法,所提CCNN-BiLSTM方法在变载荷和大噪声(信噪比为-8 dB)环境下的准确率分别至少高出3.76%与5.21%,表明该方法具有良好的鲁棒性和泛化性能。 展开更多
关键词 卷积神经网络 双向长短期记忆网络 混沌理论 轴承 故障诊断
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部