当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memor...当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)可以学习推文的上下文信息,却无法学习局部关键信息,卷积神经网络(convolution neural network,CNN)模型可以学习推文的局部关键信息,却无法学习推文的上下文信息。结合BiLSTM与CNN两种模型的优势,提出了BiLSTM-CNN推文分类模型,该模型将推文进行向量化后,输入BiLSTM模型学习推文的上下文信息,再在BiLSTM模型后引入CNN层,进行局部特征的提取,最后使用全连接层将经过池化的特征连接在一起,并应用softmax函数进行四分类。模型在自主构建的中文推特黑灰产推文数据集上进行实验,并使用TextCNN、TextRNN、TextRCNN三种分类模型作为对比实验,实验结果显示,所提的BiLSTM-CNN推文分类模型在对四类推文进行分类的宏准确率为98.32%,明显高于TextCNN、TextRNN和TextRCNN三种模型的准确率。展开更多
锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电...锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电池因存在电压平台问题,其电压波动和噪声会严重影响SOC估计的精度,本文针对这一问题,通过实验和数据驱动结合的方法,引入电池膨胀力作为新的输入维度,融合电池的电化学特性与机械特性,有效补偿了电压平台问题对SOC估计结果的影响。本研究在4种环境温度和2种动态电流测试工况下进行了实验,利用所得数据对神经网络模型进行训练和测试,以评估SOC估计精度并验证本方法的可行性和普适性。此外,本文还提出了一种基于卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,Bi-LSTM)的混合模型,兼顾序列数据的局部模式与长期依赖关系,进一步提升SOC估计的可靠性。结果表明,本文提出的方法可以显著提高磷酸铁锂电池SOC估计精度,相比未引入膨胀力信号,均方根误差(root-mean-square error,RMSE)平均下降了43.82%。同时,CNNBiLSTM模型相比其他常规神经网络模型,RMSE最多降低了53.88%。本研究为高精度SOC估计提供了新的思路,对提升电池管理系统的性能具有重要意义。展开更多
文摘锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电池因存在电压平台问题,其电压波动和噪声会严重影响SOC估计的精度,本文针对这一问题,通过实验和数据驱动结合的方法,引入电池膨胀力作为新的输入维度,融合电池的电化学特性与机械特性,有效补偿了电压平台问题对SOC估计结果的影响。本研究在4种环境温度和2种动态电流测试工况下进行了实验,利用所得数据对神经网络模型进行训练和测试,以评估SOC估计精度并验证本方法的可行性和普适性。此外,本文还提出了一种基于卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,Bi-LSTM)的混合模型,兼顾序列数据的局部模式与长期依赖关系,进一步提升SOC估计的可靠性。结果表明,本文提出的方法可以显著提高磷酸铁锂电池SOC估计精度,相比未引入膨胀力信号,均方根误差(root-mean-square error,RMSE)平均下降了43.82%。同时,CNNBiLSTM模型相比其他常规神经网络模型,RMSE最多降低了53.88%。本研究为高精度SOC估计提供了新的思路,对提升电池管理系统的性能具有重要意义。